Cargando…

Hands-On Machine Learning with C++ Build, Train, and Deploy End-To-end Machine Learning and Deep Learning Pipelines.

This book will help you explore how to implement different well-known machine learning algorithms with various C++ frameworks and libraries. You will cover basic to advanced machine learning concepts with practical and easy to follow examples. By the end of the book, you will be able to build variou...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kolodiazhnyi, Kirill
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, Limited, 2020.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Mu 4500
001 OR_on1155321512
003 OCoLC
005 20231017213018.0
006 m d
007 cr |||||||||||
008 200523s2020 xx o ||| 0 eng d
040 |a EBLCP  |b eng  |c EBLCP  |d UKAHL  |d UAB  |d UKMGB  |d OCLCF  |d DST  |d OCLCO  |d OCLCQ 
015 |a GBC059839  |2 bnb 
016 7 |a 019796812  |2 Uk 
019 |a 1175012294 
020 |a 9781789952476 
020 |a 1789952476 
020 |z 9781789955330 (pbk.) 
029 1 |a UKMGB  |b 019796812 
029 1 |a AU@  |b 000067219129 
035 |a (OCoLC)1155321512  |z (OCoLC)1175012294 
037 |a 9781789952476  |b Packt Publishing 
050 4 |a QA76.73.C153  |b .K656 2020 
082 0 4 |a 006.3102855133  |2 23 
049 |a UAMI 
100 1 |a Kolodiazhnyi, Kirill. 
245 1 0 |a Hands-On Machine Learning with C++  |h [electronic resource] :  |b Build, Train, and Deploy End-To-end Machine Learning and Deep Learning Pipelines. 
260 |a Birmingham :  |b Packt Publishing, Limited,  |c 2020. 
300 |a 1 online resource (515 p.) 
336 |a text  |2 rdacontent 
336 |a still image  |2 rdacontent 
337 |a computer  |2 rdamedia 
338 |a online resource  |2 rdacarrier 
500 |a Description based upon print version of record. 
505 0 |a Cover -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Section 1: Overview of Machine Learning -- Chapter 1: Introduction to Machine Learning with C++ -- Understanding the fundamentals of ML -- Venturing into the techniques of ML -- Supervised learning -- Unsupervised learning -- Dealing with ML models -- Model parameter estimation -- An overview of linear algebra -- Learning the concepts of linear algebra -- Basic linear algebra operations -- Tensor representation in computing -- Linear algebra API samples -- Using Eigen 
505 8 |a Using xtensor -- Using Shark-ML -- Using Dlib -- An overview of linear regression -- Solving linear regression tasks with different libraries -- Solving linear regression tasks with Eigen -- Solving linear regression tasks with Shogun -- Solving linear regression tasks with Shark-ML -- Linear regression with Dlib -- Summary -- Further reading -- Chapter 2: Data Processing -- Technical requirements -- Parsing data formats to C++ data structures -- Reading CSV files with the Fast-CPP-CSV-Parser library -- Preprocessing CSV files -- Reading CSV files with the Shark-ML library 
505 8 |a Reading CSV files with the Shogun library -- Reading CSV files with the Dlib library -- Reading JSON files with the RapidJSON library -- Writing and reading HDF5 files with the HighFive library -- Initializing matrix and tensor objects from C++ data structures -- Eigen -- Shark-ML -- Dlib -- Shogun -- Manipulating images with the OpenCV and Dlib libraries -- Using OpenCV -- Using Dlib -- Transforming images into matrix or tensor objects of various libraries -- Deinterleaving in OpenCV -- Deinterleaving in Dlib -- Normalizing data -- Normalizing with Eigen -- Normalizing with Shogun 
505 8 |a Normalizing with Dlib -- Normalizing with Shark-ML -- Summary -- Further reading -- Chapter 3: Measuring Performance and Selecting Models -- Technical requirements -- Performance metrics for ML models -- Regression metrics -- Mean squared error and root mean squared error -- Mean absolute error -- R squared -- Adjusted R squared -- Classification metrics -- Accuracy -- Precision and recall -- F-score -- AUC-ROC -- Log-Loss -- Understanding the bias and variance characteristics -- Bias -- Variance -- Normal training -- Regularization -- L1 regularization -- Lasso -- L2 regularization - Ridge 
505 8 |a Data augmentation -- Early stopping -- Regularization for neural networks -- Model selection with the grid search technique -- Cross-validation -- K-fold cross-validation -- Grid search -- Shogun example -- Shark-ML example -- Dlib example -- Summary -- Further reading -- Section 2: Machine Learning Algorithms -- Chapter 4: Clustering -- Technical requirements -- Measuring distance in clustering -- Euclidean distance -- Squared Euclidean distance -- Manhattan distance -- Chebyshev distance -- Types of clustering algorithms -- Partition-based clustering algorithms 
500 |a Distance-based clustering algorithms 
520 |a This book will help you explore how to implement different well-known machine learning algorithms with various C++ frameworks and libraries. You will cover basic to advanced machine learning concepts with practical and easy to follow examples. By the end of the book, you will be able to build various machine learning models with ease. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a C++ (Computer program language) 
650 6 |a Apprentissage automatique. 
650 6 |a C++ (Langage de programmation) 
650 7 |a C++ (Computer program language)  |2 fast  |0 (OCoLC)fst00843286 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
776 0 8 |i Print version:  |a Kolodiazhnyi, Kirill  |t Hands-On Machine Learning with C++ : Build, Train, and Deploy End-To-end Machine Learning and Deep Learning Pipelines  |d Birmingham : Packt Publishing, Limited,c2020 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781789955330/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37406617 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6201981 
994 |a 92  |b IZTAP