Cargando…

Hands-On TensorBoard for PyTorch Developers

Build better PyTorch models with TensorBoard visualization About This Video Learn everything you need to know to start using TensorBoard in PyTorch with practical examples in Machine Learning, Image Classification, and Natural Language Processing (NLP) Launch TensorBoard from any developer environme...

Descripción completa

Detalles Bibliográficos
Autor principal: Papa Joe (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico Video
Idioma:Inglés
Publicado: Packt Publishing, 2020.
Edición:1st edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a22000007a 4500
001 OR_on1152555727
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cnu||||||||
007 vz czazuu
008 090420s2020 xx --- vleng
040 |a AU@  |b eng  |c AU@  |d NZCPL  |d OCLCF  |d OCLCO  |d OCLCQ  |d DST  |d DXU 
019 |a 1232112284  |a 1300607996  |a 1303323823  |a 1392362730 
020 |z 9781838983604 
024 8 |a 9781838983604 
029 0 |a AU@  |b 000067075711 
035 |a (OCoLC)1152555727  |z (OCoLC)1232112284  |z (OCoLC)1300607996  |z (OCoLC)1303323823  |z (OCoLC)1392362730 
049 |a UAMI 
100 1 |a Papa Joe,  |e author. 
245 1 0 |a Hands-On TensorBoard for PyTorch Developers  |h [electronic resource] /  |c Papa, Joe. 
250 |a 1st edition. 
264 1 |b Packt Publishing,  |c 2020. 
300 |a 1 online resource (1 video file, approximately 2 hr., 13 min.) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a video file 
520 |a Build better PyTorch models with TensorBoard visualization About This Video Learn everything you need to know to start using TensorBoard in PyTorch with practical examples in Machine Learning, Image Classification, and Natural Language Processing (NLP) Launch TensorBoard from any developer environment, including Jupyter notebooks and Google Colab Visualize and optimize your PyTorch models using techniques such as model graphs, training curves, image data, text embeddings, and many more In Detail TensorBoard is a visualization library for TensorFlow that plots training runs, tensors, and graphs. TensorBoard has been natively supported since the PyTorch 1.1 release. In this course, you will learn how to perform Machine Learning visualization in PyTorch via TensorBoard. This course is full of practical, hands-on examples. You will begin with a quick introduction to TensorBoard and how it is used to plot your PyTorch training models. You will learn how to write TensorBoard events and run TensorBoard with PyTorch to obtain visualizations of the training progress of a neural network. You will visualize scalar values, images, text and more, and save them as events. You will log events in PyTorch-for example, scalar, image, audio, histogram, text, embedding, and back-propagation. By the end of the course, you will be confident enough to use TensorBoard visualizations in PyTorch for your real-world projects. 
538 |a Mode of access: World Wide Web. 
542 |f Packt Publishing  |g 2020 
550 |a Made available through: Safari, an O'Reilly Media Company. 
588 |a Online resource; Title from title screen (viewed March 31, 2020) 
533 |a Electronic reproduction.  |b Boston, MA :  |c Safari.  |n Available via World Wide Web.,  |d 2020. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
655 4 |a Electronic videos. 
710 2 |a Safari, an O'Reilly Media Company. 
776 |z 1-83898-360-0 
856 4 0 |u https://learning.oreilly.com/videos/~/9781838983604/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
936 |a BATCHLOAD 
994 |a 92  |b IZTAP