Cargando…

AI Fairness /

Are human decisions less biased than automated ones? AI is increasingly showing up in highly sensitive areas such as healthcare, hiring, and criminal justice. Many people assume that using data to automate decisions would make everything fair, but that's not the case. In this report, business,...

Descripción completa

Detalles Bibliográficos
Autores principales: Mahoney, Trisha (Autor), Varshney, Kush (Autor), Hind, Michael (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico eBook
Idioma:Inglés
Publicado: O'Reilly Media, Inc., 2020.
Edición:1st edition.
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007a 4500
001 OR_on1152554246
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu||||||||
008 170420s2020 xx o 000 0 eng
040 |a AU@  |b eng  |c AU@  |d OCLCQ  |d TOH  |d OCLCQ 
020 |z 9781492077657 
024 8 |a 9781492077664 
029 0 |a AU@  |b 000067074900 
035 |a (OCoLC)1152554246 
049 |a UAMI 
100 1 |a Mahoney, Trisha,  |e author. 
245 1 0 |a AI Fairness /  |c Mahoney, Trisha. 
250 |a 1st edition. 
264 1 |b O'Reilly Media, Inc.,  |c 2020. 
300 |a 1 online resource (34 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
520 |a Are human decisions less biased than automated ones? AI is increasingly showing up in highly sensitive areas such as healthcare, hiring, and criminal justice. Many people assume that using data to automate decisions would make everything fair, but that's not the case. In this report, business, analytics, and data science leaders will examine the challenges of defining fairness and reducing unfair bias throughout the machine learning pipeline. Trisha Mahoney, Kush R. Varshney, and Michael Hind from IBM explain why you need to engage early and authoritatively when building AI you can trust. You'll learn how your organization should approach fairness and bias, including trade-offs you need to make between model accuracy and model bias. This report also introduces you to AI Fairness 360, an extensible open source toolkit for measuring, understanding, and reducing AI bias. In this report, you'll explore: Legal, ethical, and trust factors you need to consider when defining fairness for your use case Different ways to measure and remove unfair bias, using the most relevant metrics for the particular use case How to define acceptable thresholds for model accuracy and unfair model bias. 
542 |f Copyright © O'Reilly Media, Inc. 
550 |a Made available through: Safari, an O'Reilly Media Company. 
588 |a Online resource; Title from title page (viewed April 25, 2020) 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
700 1 |a Varshney, Kush,  |e author. 
700 1 |a Hind, Michael,  |e author. 
710 2 |a Safari, an O'Reilly Media Company. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781492077664/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
936 |a BATCHLOAD 
994 |a 92  |b IZTAP