ML Ops : Operationalizing Data Science /
More than half of the analytics and machine learning (ML) models created by organizations today never make it into production. Instead, many of these ML models do nothing more than provide static insights in a slideshow. If they aren't truly operational, these models can't possibly do what...
Autores principales: | Sweenor, David (Autor), Hillion, Steven (Autor), Rope, Dan (Autor), Kannabiran, Dev (Autor), Hill, Thomas (Autor), O'Connell, Michael (Autor) |
---|---|
Autor Corporativo: | Safari, an O'Reilly Media Company |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
O'Reilly Media, Inc.,
2020.
|
Edición: | 1st edition. |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Ejemplares similares
-
Operationalize ML by empowering people /
Publicado: (2019) -
AutoML with Apple CreateML /
por: Deza, Alfredo, et al.
Publicado: (2021) -
SyncML : Synchronizing and Managing Your Mobile Data.
por: Hansmann, Uwe, et al.
Publicado: (2002) -
Azure ML studio : AutoML /
Publicado: (2023) -
The Framework for ML Governance /
por: Gallatin, Kyle
Publicado: (2021)