Cargando…

ML Ops : Operationalizing Data Science /

More than half of the analytics and machine learning (ML) models created by organizations today never make it into production. Instead, many of these ML models do nothing more than provide static insights in a slideshow. If they aren't truly operational, these models can't possibly do what...

Descripción completa

Detalles Bibliográficos
Autores principales: Sweenor, David (Autor), Hillion, Steven (Autor), Rope, Dan (Autor), Kannabiran, Dev (Autor), Hill, Thomas (Autor), O'Connell, Michael (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico eBook
Idioma:Inglés
Publicado: O'Reilly Media, Inc., 2020.
Edición:1st edition.
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007a 4500
001 OR_on1152552126
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu||||||||
008 160420s2020 xx o 000 0 eng
040 |a AU@  |b eng  |c AU@  |d OCLCQ  |d TOH  |d OCLCQ 
020 |z 9781492074656 
024 8 |a 9781492074663 
029 0 |a AU@  |b 000067073723 
035 |a (OCoLC)1152552126 
049 |a UAMI 
100 1 |a Sweenor, David,  |e author. 
245 1 0 |a ML Ops :  |b Operationalizing Data Science /  |c Sweenor, David. 
250 |a 1st edition. 
264 1 |b O'Reilly Media, Inc.,  |c 2020. 
300 |a 1 online resource (36 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
520 |a More than half of the analytics and machine learning (ML) models created by organizations today never make it into production. Instead, many of these ML models do nothing more than provide static insights in a slideshow. If they aren't truly operational, these models can't possibly do what you've trained them to do. This report introduces practical concepts to help data scientists and application engineers operationalize ML models to drive real business change. Through lessons based on numerous projects around the world, six experts in data analytics provide an applied four-step approach-Build, Manage, Deploy and Integrate, and Monitor-for creating ML-infused applications within your organization. You'll learn how to: Fulfill data science value by reducing friction throughout ML pipelines and workflows Constantly refine ML models through retraining, periodic tuning, and even complete remodeling to ensure long-term accuracy Design the ML Ops lifecycle to ensure that people-facing models are unbiased, fair, and explainable Operationalize ML models not only for pipeline deployment but also for external business systems that are more complex and less standardized Put the four-step Build, Manage, Deploy and Integrate, and Monitor approach into action. 
542 |f Copyright © 2020 O'Reilly Media, Inc. 
550 |a Made available through: Safari, an O'Reilly Media Company. 
588 |a Online resource; Title from title page (viewed April 25, 2020) 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
700 1 |a Hillion, Steven,  |e author. 
700 1 |a Rope, Dan,  |e author. 
700 1 |a Kannabiran, Dev,  |e author. 
700 1 |a Hill, Thomas,  |e author. 
700 1 |a O'Connell, Michael,  |e author. 
710 2 |a Safari, an O'Reilly Media Company. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781492074663/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
936 |a BATCHLOAD 
994 |a 92  |b IZTAP