|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
OR_on1151193376 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr un|---aucuu |
008 |
200418t20202020caud ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e rda
|e pn
|c EBLCP
|d GW5XE
|d EBLCP
|d LQU
|d MRB
|d OCLCF
|d UKAHL
|d SFB
|d VT2
|d UKMGB
|d NLW
|d OCLCQ
|d OCLCO
|d COM
|d OCLCQ
|d AUD
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBC077037
|2 bnb
|
016 |
7 |
|
|a 019812889
|2 Uk
|
019 |
|
|
|a 1152541271
|a 1153163204
|a 1153947521
|a 1154491318
|a 1155210640
|a 1157206508
|a 1161033859
|a 1162723403
|
020 |
|
|
|a 9781484257999
|q (electronic bk.)
|
020 |
|
|
|a 1484257995
|q (electronic bk.)
|
020 |
|
|
|a 1484257987
|
020 |
|
|
|a 9781484257982
|
020 |
|
|
|a 9781484258002
|q (print)
|
020 |
|
|
|a 1484258002
|
020 |
|
|
|z 9781484257982
|
024 |
7 |
|
|a 10.1007/978-1-4842-5799-9
|2 doi
|
024 |
8 |
|
|a 10.1007/978-1-4842-5
|
029 |
1 |
|
|a AU@
|b 000067074997
|
029 |
1 |
|
|a AU@
|b 000068658558
|
029 |
1 |
|
|a UKMGB
|b 019812889
|
035 |
|
|
|a (OCoLC)1151193376
|z (OCoLC)1152541271
|z (OCoLC)1153163204
|z (OCoLC)1153947521
|z (OCoLC)1154491318
|z (OCoLC)1155210640
|z (OCoLC)1157206508
|z (OCoLC)1161033859
|z (OCoLC)1162723403
|
037 |
|
|
|a com.springer.onix.9781484257999
|b Springer Nature
|
050 |
|
4 |
|a QA401
|
072 |
|
7 |
|a UMX
|2 bicssc
|
072 |
|
7 |
|a COM051010
|2 bisacsh
|
072 |
|
7 |
|a UMX
|2 thema
|
072 |
|
7 |
|a UMC
|2 thema
|
082 |
0 |
4 |
|a 005.13
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Eshkabilov, Sulaymon L.,
|e author.
|
245 |
1 |
0 |
|a Practical MATLAB modeling with Simulink :
|b programming and simulating ordinary and partial differential equations /
|c Sulaymon L. Eshkabilov.
|
246 |
3 |
0 |
|a Programming and simulating ordinary and partial differential equations
|
264 |
|
1 |
|a Berkeley, CA :
|b Apress L.P.,
|c [2020]
|
264 |
|
4 |
|c ©2020
|
300 |
|
|
|a 1 online resource (xxii, 473 pages) :
|b charts
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|
347 |
|
|
|b PDF
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Electronic resource, viewed May 27, 2020.
|
505 |
0 |
|
|a Intro -- Table of Contents -- About the Author -- About the Technical Reviewer -- Acknowledgments -- Introduction -- Part I: Ordinary Differential Equations -- Chapter 1: Analytical Solutions for ODEs -- Classifying ODEs -- Example 1 -- Example 2 -- Example 3 -- Analytical Solutions of ODEs -- dsolve() -- Example 4 -- Example 5 -- Example 6 -- Example 7 -- Second-Order ODEs and a System of ODEs -- Example 8 -- Example 9 -- Example 10 -- Example 11 -- Example 12 -- Example 13 -- Laplace Transforms -- Example 14 -- laplace/ilaplace -- Example 15 -- Example 16 -- Example 17 -- Example 18
|
505 |
8 |
|
|a Example 19 -- Example 20 -- Example 21 -- References -- Chapter 2: Numerical Methods for First-Order ODEs -- Euler Method -- Example 1 -- Improved Euler Method -- Backward Euler Method -- Example 2 -- Midpoint Rule Method -- Example 3 -- Ralston Method -- Runge-Kutta Method -- Example 4 -- Runge-Kutta-Gill Method -- Runge-Kutta-Fehlberg Method -- Adams-Bashforth Method -- Example 5 -- Milne Method -- Example 6 -- Taylor Series Method -- Example 7 -- Adams-Moulton Method -- Example 8 -- MATLAB's Built-in ODE Solvers -- Example 9 -- The OPTIONS, ODESET, and ODEPLOT Tools of Solvers -- Example 10
|
505 |
8 |
|
|a Example 11 -- Simulink Modeling -- Example 12 -- SIMSET -- References -- Chapter 3: Numerical Methods for Second-Order ODEs -- Euler Method -- Example 1 -- Example 2 -- Example 3 -- Example 4 -- Example 5 -- Runge-Kutta Method -- Example 6 -- Example 7 -- Example 8 -- Example 9 -- Example 10 -- Adams-Moulton Method -- Example 11 -- Example 12 -- Simulink Modeling -- Example 13 -- Example 14 -- Example 15 -- Example 16 -- Nonzero Starting Initial Conditions -- Example 17 -- ODEx Solvers -- Example 18 -- Example 19 -- Example 20 -- Example 21 -- diff() -- Example 22 -- Chapter 4: Stiff ODEs
|
505 |
8 |
|
|a Example 1 -- Example 2 -- Example 3 -- Example 4 -- Jacobian Matrix -- Example 5 -- Example 6 -- Chapter 5: Higher-Order and Coupled ODEs -- Fourth-Order ODE Problem -- Robertson Problem -- Akzo-Nobel Problem -- HIRES Problem -- Reference -- Chapter 6: Implicit ODEs -- Example 1 -- Example 2 -- Example 3 -- Example 4 -- Example 5 -- Example 6 -- References -- Chapter 7: Comparative Analysis of ODE Solution Methods -- Example 1 -- Drill Exercises -- Exercise 1 -- Exercise 2 -- Exercise 3 -- Exercise 4 -- Exercise 5 -- Exercise 6 -- Exercise 7 -- Exercise 8 -- Exercise 9 -- Exercise 10
|
505 |
8 |
|
|a Exercise 11 -- Exercise 12 -- Exercise 13 -- Part II: Boundary Value Problems in Ordinary Differential Equations -- Chapter 8: Boundary Value Problems -- Dirichlet Boundary Condition Problem -- Example 1 -- Example 2 -- Robin Boundary Condition Problem -- Example 3 -- Sturm-Liouville Boundary Value Problem -- Example 4 -- Stiff Boundary Value Problem -- Example 5 -- References -- Drill Exercises -- Exercise 1 -- Exercise 2 -- Exercise 3 -- Exercise 4 -- Exercise 5 -- Exercise 6 -- Exercise 7 -- Exercise 8 -- Exercise 9 -- Exercise 10 -- Exercise 11 -- Exercise 12 -- Exercise 13
|
500 |
|
|
|a Part III: Applications of Ordinary Differential Equations
|
520 |
|
|
|a Employ the essential and hands-on tools and functions of the MATLAB's ordinary differential equations (ODEs) and partial differential equations (PDEs) packages, which are explained and demonstrated via interactive examples and case studies. This book contains dozens of simulations and solved problems via m-files/scripts and Simulink models which help you to learn programming and modeling of more difficult, complex problems that involve the use of ODEs and PDEs. Youll become efficient with many of the built-in tools and functions of MATLAB/Simulink while solving more complex engineering and scientific computing problems that require and use differential equations. Practical MATLAB Modeling with Simulink explains various practical issues of programming and modelling. After reading and using this book, you'll be proficient at using MATLAB and applying the source code from the book's examples as templates for your own projects in data science or engineering. What You Will Learn How to model more complex problems using MATLAB and Simulink Gain the programming and modeling essentials of MATLAB using ODEs and PDEs How to program and use numerical methods to solve 1st and 2nd order ODEs How to program and solve stiff, higher order, coupled and implicit ODEs How to program and use numerical methods to solve 1st and 2nd order linear PDEs How to program and solve stiff, higher order, coupled and implicit PDEs.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
630 |
0 |
0 |
|a MATLAB.
|
630 |
0 |
0 |
|a SIMULINK.
|
630 |
0 |
7 |
|a MATLAB
|2 fast
|
630 |
0 |
7 |
|a SIMULINK
|2 fast
|
650 |
|
7 |
|a Mathematical theory of computation.
|2 bicssc
|
650 |
|
7 |
|a Maths for computer scientists.
|2 bicssc
|
650 |
|
7 |
|a Differential calculus & equations.
|2 bicssc
|
650 |
|
7 |
|a Programming & scripting languages: general.
|2 bicssc
|
650 |
|
7 |
|a Mathematics
|x Logic.
|2 bisacsh
|
650 |
|
7 |
|a Computers
|x Programming
|x Algorithms.
|2 bisacsh
|
650 |
|
7 |
|a Computers
|x Data Processing.
|2 bisacsh
|
650 |
|
7 |
|a Mathematics
|x Differential Equations.
|2 bisacsh
|
650 |
|
7 |
|a Computers
|x Programming Languages
|x General.
|2 bisacsh
|
776 |
0 |
8 |
|i Print version:
|a Eshkabilov, Sulaymon L.
|t Practical MATLAB Modeling with Simulink : Programming and Simulating Ordinary and Partial Differential Equations.
|d Berkeley, CA : Apress L.P., ©2020
|z 9781484257982
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781484257999/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37404348
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL6167729
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL6167635
|
994 |
|
|
|a 92
|b IZTAP
|