|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
OR_on1151184484 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr un|---aucuu |
008 |
200418s2020 enk ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d DG1
|d OCLCO
|d EBLCP
|d UKAHL
|d OCLCF
|d OCLCQ
|d S2H
|d TOH
|d N$T
|d K6U
|d OCLCO
|d OCLCQ
|d SFB
|d OCLCQ
|d OCLCO
|
020 |
|
|
|a 9781119720430
|q (electronic bk. ;
|q oBook)
|
020 |
|
|
|a 1119720435
|q (electronic bk. ;
|q oBook)
|
020 |
|
|
|a 1119720427
|
020 |
|
|
|a 9781119720423
|q (electronic bk.)
|
029 |
1 |
|
|a AU@
|b 000067253887
|
035 |
|
|
|a (OCoLC)1151184484
|
050 |
|
4 |
|a QA76.9.B45
|
082 |
0 |
4 |
|a 005.7
|2 23
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Data lakes /
|c edited by Anne Laurent, Dominique Laurent, Cédrine Madera.
|
260 |
|
|
|a London :
|b ISTE, Ltd. ;
|a Hoboken :
|b Wiley,
|c 2020.
|
300 |
|
|
|a 1 online resource (249 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Computer engineering series, databases and big data set ;
|v volume 2
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover -- Half-Title Page -- Dedication -- Title Page -- Copyright Page -- Contents -- Preface -- 1. Introduction to Data Lakes: Definitions and Discussions -- 1.1. Introduction to data lakes -- 1.2. Literature review and discussion -- 1.3. The data lake challenges -- 1.4. Data lakes versus decision-making systems -- 1.5. Urbanization for data lakes -- 1.6. Data lake functionalities -- 1.7. Summary and concluding remarks -- 2. Architecture of Data Lakes -- 2.1. Introduction -- 2.2. State of the art and practice -- 2.2.1. Definition -- 2.2.2. Architecture -- 2.2.3. Metadata
|
505 |
8 |
|
|a 2.2.4. Data quality -- 2.2.5. Schema-on-read -- 2.3. System architecture -- 2.3.1. Ingestion layer -- 2.3.2. Storage layer -- 2.3.3. Transformation layer -- 2.3.4. Interaction layer -- 2.4. Use case: the Constance system -- 2.4.1. System overview -- 2.4.2. Ingestion layer -- 2.4.3. Maintenance layer -- 2.4.4. Query layer -- 2.4.5. Data quality control -- 2.4.6. Extensibility and flexibility -- 2.5. Concluding remarks -- 3. Exploiting Software Product Lines and Formal Concept Analysis for the Design of Data Lake Architectures -- 3.1. Our expectations -- 3.2. Modeling data lake functionalities
|
505 |
8 |
|
|a 3.3. Building the knowledge base of industrial data lakes -- 3.4. Our formalization approach -- 3.5. Applying our approach -- 3.6. Analysis of our first results -- 3.7. Concluding remarks -- 4. Metadata in Data Lake Ecosystems -- 4.1. Definitions and concepts -- 4.2. Classification of metadata by NISO -- 4.2.1. Metadata schema -- 4.2.2. Knowledge base and catalog -- 4.3. Other categories of metadata -- 4.3.1. Business metadata -- 4.3.2. Navigational integration -- 4.3.3. Operational metadata -- 4.4. Sources of metadata -- 4.5. Metadata classification -- 4.6. Why metadata are needed
|
505 |
8 |
|
|a 4.6.1. Selection of information (re)sources -- 4.6.2. Organization of information resources -- 4.6.3. Interoperability and integration -- 4.6.4. Unique digital identification -- 4.6.5. Data archiving and preservation -- 4.7. Business value of metadata -- 4.8. Metadata architecture -- 4.8.1. Architecture scenario 1: point-to-point metadata architecture -- 4.8.2. Architecture scenario 2: hub and spoke metadata architecture -- 4.8.3. Architecture scenario 3: tool of record metadata architecture -- 4.8.4. Architecture scenario 4: hybrid metadata architecture
|
505 |
8 |
|
|a 4.8.5. Architecture scenario 5: federated metadata architecture -- 4.9. Metadata management -- 4.10. Metadata and data lakes -- 4.10.1. Application and workload layer -- 4.10.2. Data layer -- 4.10.3. System layer -- 4.10.4. Metadata types -- 4.11. Metadata management in data lakes -- 4.11.1. Metadata directory -- 4.11.2. Metadata storage -- 4.11.3. Metadata discovery -- 4.11.4. Metadata lineage -- 4.11.5. Metadata querying -- 4.11.6. Data source selection -- 4.12. Metadata and master data management -- 4.13. Conclusion -- 5. A Use Case of Data Lake Metadata Management -- 5.1. Context
|
500 |
|
|
|a 5.1.1. Data lake definition
|
504 |
|
|
|a Includes bibliographical references and index.
|
520 |
|
|
|a The concept of a data lake is less than 10 years old, but they are already hugely implemented within large companies. Their goal is to efficiently deal with ever-growing volumes of heterogeneous data, while also facing various sophisticated user needs. However, defining and building a data lake is still a challenge, as no consensus has been reached so far. Data Lakes presents recent outcomes and trends in the field of data repositories. The main topics discussed are the data-driven architecture of a data lake; the management of metadata - supplying key information about the stored data, master data and reference data; the roles of linked data and fog computing in a data lake ecosystem; and how gravity principles apply in the context of data lakes. A variety of case studies are also presented, thus providing the reader with practical examples of data lake management.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Big data.
|
650 |
|
0 |
|a Databases.
|
650 |
|
6 |
|a Données volumineuses.
|
650 |
|
7 |
|a Big data
|2 fast
|
650 |
|
7 |
|a Databases
|2 fast
|
700 |
1 |
|
|a Laurent, Anne,
|d 1976-
|
700 |
1 |
|
|a Laurent, Dominique.
|
700 |
1 |
|
|a Madera, Cédrine.
|
776 |
0 |
8 |
|i Print version:
|a Laurent, Anne.
|t Data Lakes.
|d Newark : John Wiley & Sons, Incorporated, ©2020
|z 9781786305855
|
830 |
|
0 |
|a Computer engineering series.
|p Databases and big data set ;
|v volume 2.
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781786305855/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37732084
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37348401
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL6173691
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 2436380
|
994 |
|
|
|a 92
|b IZTAP
|