Cargando…

Deep learning for coders with fastai and PyTorch /

Deep learning has the reputation as an exclusive domain for math PhDs. Not so. With this book, programmers comfortable with Python will learn how to get started with deep learning right away. Using PyTorch and the fastai deep learning library, you'll learn how to train a model to accomplish a w...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Howard, Jeremy (Autor), Gugger, Sylvain (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly Media, Inc., [2020]
Edición:1st edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1147974899
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu||||||||
008 020320s2020 ca o 000 0 eng
040 |a AU@  |b eng  |e pn  |c AU@  |d YDX  |d YDXIT  |d OCLCO  |d EBLCP  |d OCLCF  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 1162842152  |a 1163493396 
020 |a 9781492045472  |q (electronic book) 
020 |a 1492045470  |q (electronic book) 
020 |z 9781492045526 
024 8 |a 9781492045519 
029 0 |a AU@  |b 000066971693 
029 1 |a AU@  |b 000070668592 
035 |a (OCoLC)1147974899  |z (OCoLC)1162842152  |z (OCoLC)1163493396 
050 4 |a Q325.5  |b .H69 2020 
082 0 4 |a 006.3/1  |2 23 
049 |a UAMI 
100 1 |a Howard, Jeremy,  |e author. 
245 1 0 |a Deep learning for coders with fastai and PyTorch /  |c Jeremy Howard and Sylvain Gugger. 
250 |a 1st edition. 
264 1 |a Sebastopol, CA :  |b O'Reilly Media, Inc.,  |c [2020] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Deep learning has the reputation as an exclusive domain for math PhDs. Not so. With this book, programmers comfortable with Python will learn how to get started with deep learning right away. Using PyTorch and the fastai deep learning library, you'll learn how to train a model to accomplish a wide range of tasks-including computer vision, natural language processing, tabular data, and generative networks. At the same time, you'll dig progressively into deep learning theory so that by the end of the book you'll have a complete understanding of the math behind the library's functions. 
505 0 |a Intro -- Preface -- Who This Book Is For -- What You Need to Know -- What You Will Learn -- O'Reilly Online Learning -- How to Contact Us -- Foreword -- I. Deep Learning in Practice -- 1. Your Deep Learning Journey -- Deep Learning Is for Everyone -- Neural Networks: A Brief History -- Who We Are -- How to Learn Deep Learning -- Your Projects and Your Mindset -- The Software: PyTorch, fastai, and Jupyter (And Why It Doesn't Matter) -- Your First Model -- Getting a GPU Deep Learning Server -- Running Your First Notebook -- What Is Machine Learning? -- What Is a Neural Network? 
505 8 |a A Bit of Deep Learning Jargon -- Limitations Inherent to Machine Learning -- How Our Image Recognizer Works -- What Our Image Recognizer Learned -- Image Recognizers Can Tackle Non-Image Tasks -- Jargon Recap -- Deep Learning Is Not Just for Image Classification -- Validation Sets and Test Sets -- Use Judgment in Defining Test Sets -- A Choose Your Own Adventure Moment -- Questionnaire -- Further Research -- 2. From Model to Production -- The Practice of Deep Learning -- Starting Your Project -- The State of Deep Learning -- Computer vision -- Text (natural language processing) 
505 8 |a Combining text and images -- Tabular data -- Recommendation systems -- Other data types -- The Drivetrain Approach -- Gathering Data -- From Data to DataLoaders -- Data Augmentation -- Training Your Model, and Using It to Clean Your Data -- Turning Your Model into an Online Application -- Using the Model for Inference -- Creating a Notebook App from the Model -- Turning Your Notebook into a Real App -- Deploying Your App -- How to Avoid Disaster -- Unforeseen Consequences and Feedback Loops -- Get Writing! -- Questionnaire -- Further Research -- 3. Data Ethics -- Key Examples for Data Ethics 
505 8 |a Bugs and Recourse: Buggy Algorithm Used for Healthcare Benefits -- Feedback Loops: YouTube's Recommendation System -- Bias: Professor Latanya Sweeney "Arrested" -- Why Does This Matter? -- Integrating Machine Learning with Product Design -- Topics in Data Ethics -- Recourse and Accountability -- Feedback Loops -- Bias -- Historical bias -- Measurement bias -- Aggregation bias -- Representation bias -- Addressing different types of bias -- Disinformation -- Identifying and Addressing Ethical Issues -- Analyze a Project You Are Working On -- Processes to Implement -- Ethical lenses 
505 8 |a The Power of Diversity -- Fairness, Accountability, and Transparency -- Role of Policy -- The Effectiveness of Regulation -- Rights and Policy -- Cars: A Historical Precedent -- Conclusion -- Questionnaire -- Further Research -- Deep Learning in Practice: That's a Wrap! -- II. Understanding fastai's Applications -- 4. Under the Hood: Training a Digit Classifier -- Pixels: The Foundations of Computer Vision -- First Try: Pixel Similarity -- NumPy Arrays and PyTorch Tensors -- Computing Metrics Using Broadcasting -- Stochastic Gradient Descent -- Calculating Gradients 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 6 |a Apprentissage automatique. 
650 7 |a Machine learning  |2 fast 
700 1 |a Gugger, Sylvain,  |e author. 
710 2 |a Safari, an O'Reilly Media Company. 
776 0 8 |i Print version:  |a Howard, Jeremy.  |t Deep Learning for Coders with Fastai and Pytorch.  |d Sebastopol : O'Reilly Media, Incorporated, ©2020 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781492045519/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a YBP Library Services  |b YANK  |n 16828616 
994 |a 92  |b IZTAP