Cargando…

Deep Learning with JavaScript /

In Deep Learning with JavaScript, you'll learn to use TensorFlow.js to build deep learning models that run directly in the browser. This fast-paced book, written by Google engineers, is practical, engaging, and easy to follow. Through diverse examples featuring text analysis, speech processing,...

Descripción completa

Detalles Bibliográficos
Autores principales: Bileschi, Stanley (Autor), Cai, Shanqing (Autor), Nielsen, Eric (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Manning Publications, 2020.
Edición:1st edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a22000007a 4500
001 OR_on1147974536
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu||||||||
008 190320s2020 xx o 000 0 eng
040 |a AU@  |b eng  |c AU@  |d TOH  |d OCLCO  |d CZL  |d OCLCO  |d OCLCQ 
020 |z 9781617296178 
024 8 |a 9781617296178 
029 0 |a AU@  |b 000066971665 
035 |a (OCoLC)1147974536 
082 0 4 |a 006.3/1  |q OCoLC  |2 23/eng/20230216 
049 |a UAMI 
100 1 |a Bileschi, Stanley,  |e author. 
245 1 0 |a Deep Learning with JavaScript /  |c Bileschi, Stanley. 
250 |a 1st edition. 
264 1 |b Manning Publications,  |c 2020. 
300 |a 1 online resource (560 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
520 |a In Deep Learning with JavaScript, you'll learn to use TensorFlow.js to build deep learning models that run directly in the browser. This fast-paced book, written by Google engineers, is practical, engaging, and easy to follow. Through diverse examples featuring text analysis, speech processing, image recognition, and self-learning game AI, you'll master all the basics of deep learning and explore advanced concepts, like retraining existing models for transfer learning and image generation. 
542 |f © 2020 Manning Publications Co. All rights reserved.  |g 2020 
550 |a Made available through: Safari, an O'Reilly Media Company. 
588 |a Online resource; Title from title page (viewed February 4, 2020) 
505 0 |a Intro -- Copyright -- Brief Table of Contents -- Table of Contents -- Foreword -- Preface -- Acknowledgments -- About this Book -- About the Authors -- About the cover illustration -- Part 1. Motivation and basic concepts -- Chapter 1. Deep learning and JavaScript -- 1.1. Artificial intelligence, machine learning, neural networks, and deep learning -- 1.2. Why combine JavaScript and machine learning? -- 1.3. Why TensorFlow.js? -- Exercises -- Summary -- Part 2. A gentle introduction to TensorFlow.js -- Chapter 2. Getting started: Simple linear regression in TensorFlow.js -- 2.1. Example 1: Predicting the duration of a download using TensorFlow.js -- 2.2. Inside Model.fit(): Dissecting gradient descent from example 1 -- 2.3. Linear regression with multiple input features -- 2.4. How to interpret your model -- Exercises -- Summary -- Chapter 3. Adding nonlinearity: Beyond weighted sums -- 3.1. Nonlinearity: What it is and what it is good for -- 3.2. Nonlinearity at output: Models for classification -- 3.3. Multiclass classification -- Exercises -- Summary -- Chapter 4. Recognizing images and sounds using convnets -- 4.1. From vectors to tensors: Representing images -- 4.2. Your first convnet -- 4.3. Beyond browsers: Training models faster using Node.js -- 4.4. Spoken-word recognition: Applying convnets on audio data -- Exercises -- Summary -- Chapter 5. Transfer learning: Reusing pretrained neural networks -- 5.1. Introduction to transfer learning: Reusing pretrained models -- 5.2. Object detection through transfer learning on a convnet -- Exercises -- Summary -- Part 3. Advanced deep learning with TensorFlow.js -- Chapter 6. Working with data -- 6.1. Using tf.data to manage data -- 6.2. Training models with model.fitDataset -- 6.3. Common patterns for accessing data -- 6.4. Your data is likely flawed: Dealing with problems in your data. 
505 8 |a 6.5. Data augmentation -- Exercises -- Summary -- Chapter 7. Visualizing data and models -- 7.1. Data visualization -- 7.2. Visualizing models after training -- Materials for further reading and exploration -- Exercises -- Summary -- Chapter 8. Underfitting, overfitting, and the universal workflow of machine learning -- 8.1. Formulation of the temperature-prediction problem -- 8.2. Underfitting, overfitting, and countermeasures -- 8.3. The universal workflow of machine learning -- Exercises -- Summary -- Chapter 9. Deep learning for sequences and text -- 9.1. Second attempt at weather prediction: Introducing RNNs -- 9.2. Building deep-learning models for text -- 9.3. Sequence-to-sequence tasks with attention mechanism -- Materials for further reading -- Exercises -- Summary -- Chapter 10. Generative deep learning -- 10.1. Generating text with LSTM -- 10.2. Variational autoencoders: Finding an efficient and structured vec- ctor representation of images -- 10.3. Image generation with GANs -- Materials for further reading -- Exercises -- Summary -- Chapter 11. Basics of deep reinforcement learning -- 11.1. The formulation of reinforcement-learning problems -- 11.2. Policy networks and policy gradients: The cart-pole example -- 11.3. Value networks and Q-learning: The snake game example -- Materials for further reading -- Exercises -- Summary -- Part 4. Summary and closing words -- Chapter 12. Testing, optimizing, and deploying models -- 12.1. Testing TensorFlow.js models -- 12.2. Model optimization -- 12.3. Deploying TensorFlow.js models on various platforms and environments -- Materials for further reading -- Exercises -- Summary -- Chapter 13. Summary, conclusions, and beyond -- 13.1. Key concepts in review -- 13.2. Quick overview of the deep-learning workflow and algorithms in TensorFlow.js -- 13.3. Trends in deep learning. 
505 8 |a 13.4. Pointers for further exploration -- Final words -- Appendix A. Installing tfjs-node-gpu and its dependencies -- A.1. Installing tfjs-node-gpu on Linux -- A.2. Installing tfjs-node-gpu on Windows -- Appendix B.A quick tutorial of tensors and operations in TensorFlow.js -- B.1. Tensor creation and tensor axis conventions -- B.2. Basic tensor operations -- B.3. Memory management in TensorFlow.js: tf.dispose() and tf.tidy() -- B.4. Calculating gradients -- Exercises -- Glossary -- Index -- List of Figures -- List of Tables -- List of Listings. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a TensorFlow. 
650 0 |a JavaScript (Computer program language) 
650 0 |a Artificial intelligence. 
650 0 |a Machine learning. 
650 2 |a Artificial Intelligence 
650 6 |a JavaScript (Langage de programmation) 
650 6 |a Intelligence artificielle. 
650 6 |a Apprentissage automatique. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a JavaScript (Computer program language)  |2 fast  |0 (OCoLC)fst00982071 
700 1 |a Cai, Shanqing,  |e author. 
700 1 |a Nielsen, Eric,  |e author. 
710 2 |a Safari, an O'Reilly Media Company. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781617296178/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
936 |a BATCHLOAD 
994 |a 92  |b IZTAP