Statistical thinking : improving business performance /
"This book will help managers who are undertaking improvement initiatives (six sigma, balanced scorecard, etc.) in their business understand the "why" and "what" of statistics (i.e., what we are trying to accomplish and the role that statistics can play) prior to getting int...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hoboken, New Jersey :
John Wiley & Sons, Inc.,
[2020]
|
Edición: | Third edition. |
Colección: | Wiley SAS business series
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- <P>Preface</p> <p>Introduction to JMP</p> <p><b>Part One: Statistical Thinking Concepts</b></p> <p><b>1. Need for Business Improvement</b></p> <p>a. Today's Business Realities and the Need to Improve</p> <p>b. We now Have Two Jobs: A model for Business Improvement</p> <p>c. New Management Approaches Require Statistical Thinking</p> <p>d. Principles of Statistical Thinking</p> <p>e. Applications of Statistical Thinking</p> <p>f. Summary and Looking Forward</p> <p>g. Notes</p> <p><b>2. Data: the Missing Link</b></p> <p>a. Why Do We Need Data?</p> <p>b. Types of Data</p> <p>c. All Data Are Not Created Equal</p> <p>d. Practical Sampling Tips to Ensure Data Quality</p> <p>e. What about Data Quantity?</p> <p>f. Documenting the Data Pedigree
- The Data's Story</p> <p>g. The Measurement System</p> <p>h. Summarizing Data</p> <p>i. Summary and Looking Forward</p> <p>j. Notes</p> <p><b>3. Statistical Thinking Strategy</b></p> <p>a. Case Study: The Effect of Advertising on Sales</p> <p>b. Case Study: Improvement of a Soccer Team's Performance</p> <p>c. Statistical Thinking Strategy</p> <p>d. Variation in Business Processes</p> <p>e. Synergy between Data and Subject Matter Knowledge</p> <p>f. Dynamic Nature of Business Processes</p> <p>g. Value of Graphics
- Discovering the Unexpected</p> <p>h. Summary and Looking Forward</p> <p>i. Project Update</p> <p>j. Notes</p> <p><b>4. Understanding Business Processes</b></p> <p>a. Examples of Business Processes</p> <p>b. SIPOC Model for Processes</p> <p>c. Identifying Business Processes</p> <p>d. Analysis of Business Processes</p> <p>e. Process Complexity</p> <p>f. The Hidden Plant
- Another Source of Waste and Complexity</p> <p>g. Process Measurements</p> <p>h. Benchmarking</p> <p>i. Systems of Processes</p> <p>j. Summary and Looking Forward</p> <p>k. Project Update</p> <p>l. Notes</p> <p><b>Part Two: Holistic Improvement: Frameworks and Basic Tools</b></p> <p><b>5. Holistic Improvement: Tactics to Deploy Statistical Thinking</b></p> <p>a. Case Study: Revolving Customer Complaints of Baby Wipe Flushability</p> <p>b. The Problem-Solving Framework</p> <p>c. Case Study: Reducing Resin Output Variation</p> <p>d. The Process Improvement Framework</p> <p>e. Statistical Engineering</p> <p>f. Statistical Engineering Case Study: Predicting Corporate Defaults</p> <p>g. A Framework for Statistical Engineering Projects</p> <p>h. Summary and Looking Forward</p> <p>i. Project Update</p> <p>j. Notes</p> <p><b>6. Process Improvement and Problem-Solving Tools</b></p> <p>a. Practical Tools</p> <p>b. Knowledge-Based Tools</p> <p>c. Graphical Tools</p> <p>d. Analytical Tools</p> <p>e. Summary and Looking Forward</p> <p>f. Project Update</p> <p>g. Notes</p> <p><b>Part Three: Formal Statistical Methods</b></p> <p><b>7. Building and Using Models</b></p> <p>a. Examples of Business Models</p> <p>b. Types of Models</p> <p>c. Regression Modeling Process</p> <p>d. Building Models with One Predictor Variable</p> <p>e. Building Models with Several Predictor Variables</p> <p>f. Multicollinearity: Another Model Check</p> <p>g. Some Limitations of Using Observational Data</p> <p>h. Summary and Looking Forward</p> <p>i. Project Update</p> <p>j. Notes</p> <p><b>8. Using Process Experimentation to Build Models</b></p> <p>a. Randomized versus Observational Studies</p> <p>b. Why Do We Need a Statistical approach?</p> <p>c. Examples of Process Experiments</p> <p>d. Statistical Approach to Experimentation</p> <p>e. Two Factor Experiments: A Case Study</p> <p>f. Three Factor Experiments: A Case Study</p> <p>g. Larger Experiments</p> <p>h. Blocking, Randomization and Center Points</p> <p>i. Summary and Looking Forward</p> <p>j. Project Update</p> <p>k. Notes</p> <p><b>9. Applications of Statistical Inference Tools</b></p> <p>a. Examples of Statistical Inference Tools</p> <p>b. Process of Applying Statistical Inference</p> <p>c. Statistical Confidence and Prediction Intervals</p> <p>d. Statistical Hypothesis Tests</p> <p>e. Sample Size Formulas</p> <p>f. Summary and Looking Forward</p> <p>g. Project Update</p> <p>h. Notes</p> <p><b>10. Underlying Theory of Statistical Inference</b></p> <p>a. Applications of the Theory</p> <p>b. Theoretical Framework of Statistical Inference</p> <p>c. Probability Distributions</p> <p>d. Sampling Distributions</p> <p>e. Linear Combinations</p> <p>f. Transformations</p> <p>g. Summary and Looking Forward</p> <p>h. Project Update</p> <p>i. Notes</p> <p>Appendix A Effective Teamwork</p> <p>Appendix B Presentations and Report Writing</p> <p>Appendix C More on Surveys</p> <p>Appendix D More on Regression</p> <p>Appendix E More on Design of Experiments</p> <p>Appendix F More on Inference Tools</p> <p>Appendix G More on Probability Distributions</p> <p>Appendix H DMAIC Process Improvement Framework</p> <p>Appendix I T Critical Values</p> <p>Appendix J Standard Normal Probabilities (Cumulative Z Curve Areas)</p>