Cargando…

Sequence to sequence modeling for time series forecasting

S2S modeling using neural networks is increasingly becoming mainstream. In particular, it's been leveraged for applications such as, but not limited to, speech recognition, language translation, and question answering. More recently, S2S has also been used for applications based on time series...

Descripción completa

Detalles Bibliográficos
Autores principales: Kejariwal, Arun (Autor), Cohen, Ira (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico Video
Idioma:Inglés
Publicado: O'Reilly Media, Inc., 2020.
Edición:1st edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a22000007a 4500
001 OR_on1143018604
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cnu||||||||
007 vz czazuu
008 200220s2020 xx 045 vleng
040 |a AU@  |b eng  |c AU@  |d UAB  |d STF  |d TOH  |d NZCPL  |d OCLCF  |d OCLCO  |d FZL  |d OCLCQ  |d DXU  |d OCLCQ 
019 |a 1191042157  |a 1193323002  |a 1224592388  |a 1232112199  |a 1256379124  |a 1305900560  |a 1351592445  |a 1380765126  |a 1385503539 
020 |z 0636920371069 
024 8 |a 0636920371083 
029 0 |a AU@  |b 000066785848 
035 |a (OCoLC)1143018604  |z (OCoLC)1191042157  |z (OCoLC)1193323002  |z (OCoLC)1224592388  |z (OCoLC)1232112199  |z (OCoLC)1256379124  |z (OCoLC)1305900560  |z (OCoLC)1351592445  |z (OCoLC)1380765126  |z (OCoLC)1385503539 
082 0 4 |a E VIDEO 
049 |a UAMI 
100 1 |a Kejariwal, Arun,  |e author. 
245 1 0 |a Sequence to sequence modeling for time series forecasting  |h [electronic resource] /  |c Kejariwal, Arun. 
250 |a 1st edition. 
264 1 |b O'Reilly Media, Inc.,  |c 2020. 
300 |a 1 online resource (1 video file, approximately 45 min.) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
344 |a digital  |2 rdatr 
347 |a video file 
520 |a S2S modeling using neural networks is increasingly becoming mainstream. In particular, it's been leveraged for applications such as, but not limited to, speech recognition, language translation, and question answering. More recently, S2S has also been used for applications based on time series data. Specifically, people are actively exploring S2S modeling-based real-time anomaly detection and forecasting. Arun Kejariwal (independent) and Ira Cohen (Anodot) provide an overview of S2S and the early use cases of S2S. They'll walk you through how S2S modeling can be leveraged for the aforementioned use cases, visualization, real-time anomaly detection, and forecasting. You'll learn how multilayered long short-term memory (LSTM) encodes the input time series and a deep LSTM decodes. In anomaly detection, the output is married with "traditional" statistical approaches for anomaly detection. Conceivably, any of the many variants of LSTM or recurrent neural network (RNN) alternatives of LSTM can be used to trade-off accuracy and speed. Further, given that LSTMs operate sequentially and are quite slow to train, Arun and Ira shed light on how architectures such as convolutional neural networks (CNNs) and self-attention networks (SANs) can be leveraged to achieve significant improvements in accuracy. You'll see a concrete case study to illustrate the use of S2S for both real-time anomaly detection and forecasting for time series data. What you'll learn Learn how to leverage S2S models for real-time anomaly detection and forecasting This session is from the 2019 O'Reilly Artificial Intelligence Conference in San Jose, CA 
538 |a Mode of access: World Wide Web. 
542 |f Copyright © O'Reilly Media, Inc. 
550 |a Made available through: Safari, an O'Reilly Media Company. 
588 |a Online resource; Title from title screen (viewed February 28, 2020) 
533 |a Electronic reproduction.  |b Boston, MA :  |c Safari.  |n Available via World Wide Web. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
655 4 |a Electronic videos. 
700 1 |a Cohen, Ira,  |e author. 
710 2 |a Safari, an O'Reilly Media Company. 
856 4 0 |u https://learning.oreilly.com/videos/~/0636920371083/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
936 |a BATCHLOAD 
994 |a 92  |b IZTAP