Cargando…

Neural structured learning in TensorFlow

Neural structured learning is an easy-to-use, open-sourced TensorFlow framework that both novice and advanced developers can use for training neural networks with structured signals. NSL can be applied to construct accurate and robust models for vision, language understanding, and prediction in gene...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Juan, Da-Cheng (Autor), Ravi, Sujith (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico Video
Idioma:Inglés
Publicado: O'Reilly Media, Inc., 2020.
Edición:1st edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a22000007a 4500
001 OR_on1143018514
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cnu||||||||
007 vz czazuu
008 200220s2020 xx 042 vleng
040 |a AU@  |b eng  |c AU@  |d UMI  |d OCLCF  |d UAB  |d TOH  |d OCLCO  |d FZL  |d OCLCQ 
019 |a 1176539712  |a 1191041035  |a 1224586461  |a 1232118417  |a 1256310374  |a 1305852008  |a 1351589287  |a 1380768642 
020 |z 0636920373490 
024 8 |a 0636920373513 
029 0 |a AU@  |b 000066785908 
035 |a (OCoLC)1143018514  |z (OCoLC)1176539712  |z (OCoLC)1191041035  |z (OCoLC)1224586461  |z (OCoLC)1232118417  |z (OCoLC)1256310374  |z (OCoLC)1305852008  |z (OCoLC)1351589287  |z (OCoLC)1380768642 
037 |a CL0501000126  |b Safari Books Online 
050 4 |a Q325.5 
082 0 4 |a E VIDEO 
049 |a UAMI 
100 1 |a Juan, Da-Cheng,  |e author. 
245 1 0 |a Neural structured learning in TensorFlow  |h [electronic resource] /  |c Juan, Da-Cheng. 
250 |a 1st edition. 
264 1 |b O'Reilly Media, Inc.,  |c 2020. 
300 |a 1 online resource (1 video file, approximately 42 min.) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
344 |a digital  |2 rdatr 
347 |a video file 
520 |a Neural structured learning is an easy-to-use, open-sourced TensorFlow framework that both novice and advanced developers can use for training neural networks with structured signals. NSL can be applied to construct accurate and robust models for vision, language understanding, and prediction in general. Many machine learning tasks benefit from using structured data that contains rich relational information among the samples. These structures can be explicitly given (e.g., as a graph) or implicitly inferred (e.g., as an adversarial example). Leveraging structured signals during training allows developers to achieve higher model accuracy, particularly when the amount of labeled data is relatively small. Training with structured signals also leads to more robust models. Da-Cheng Juan and Sujith Ravi explore the concept, framework, and workflow of NSL and provides the code examples for practitioners and developers. Prerequisite knowledge A basic understanding of neural networks and TensorFlow What you'll learn Discover the concept, framework, and workflow of NSL. 
538 |a Mode of access: World Wide Web. 
542 |f Copyright © O'Reilly Media, Inc. 
550 |a Made available through: Safari, an O'Reilly Media Company. 
588 |a Online resource; Title from title screen (viewed February 28, 2020) 
511 0 |a Presenter, Da-Cheng Juan, Sujith Ravi. 
533 |a Electronic reproduction.  |b Boston, MA :  |c Safari.  |n Available via World Wide Web. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
655 4 |a Electronic videos. 
700 1 |a Ravi, Sujith,  |e author. 
710 2 |a Safari, an O'Reilly Media Company. 
856 4 0 |u https://learning.oreilly.com/videos/~/0636920373513/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
936 |a BATCHLOAD 
994 |a 92  |b IZTAP