Cargando…

Machine learning 101 with Scikit-Learn and StatsModels /

"Machine Learning is one of the fundamental skills you need to become a data scientist. It's the steppingstone that will help you understand deep learning and modern data analysis techniques. In this course, you'll explore the three fundamental machine learning topics - linear regress...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : Packt Publishing, 2019.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1141018051
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 200218s2019 xx 314 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d ERF  |d OCLCO  |d OCLCQ  |d OCLCO 
035 |a (OCoLC)1141018051 
037 |a CL0501000098  |b Safari Books Online 
050 4 |a Q325.5 
049 |a UAMI 
245 0 0 |a Machine learning 101 with Scikit-Learn and StatsModels /  |c 365 Careers. 
246 3 |a Machine learning one hundred and one with Scikit-Learn and StatsModels 
264 1 |a [Place of publication not identified] :  |b Packt Publishing,  |c 2019. 
300 |a 1 online resource (1 streaming video file (5 hr., 13 min., 25 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Title from resource description page (Safari, viewed February 18, 2020). 
520 |a "Machine Learning is one of the fundamental skills you need to become a data scientist. It's the steppingstone that will help you understand deep learning and modern data analysis techniques. In this course, you'll explore the three fundamental machine learning topics - linear regression, logistic regression, and cluster analysis. Even neural networks geeks (like us) can't help but admit that it's these three simple methods that data science revolves around. So, in this course, we will make the otherwise complex subject matter easy to understand and apply in practice. This course supports statistics theory with practical application of these quantitative methods in Python to help you develop skills in the context of data science. We've developed this course with not one but two machine learning libraries: StatsModels and sklearn. You'll be eager to complete this course and get ready to become a successful data scientist!"--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Neural networks (Computer science) 
650 0 |a Regression analysis. 
650 0 |a Statistics  |x Data processing. 
650 6 |a Apprentissage automatique. 
650 6 |a Réseaux neuronaux (Informatique) 
650 6 |a Analyse de régression. 
650 6 |a Statistique  |x Informatique. 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
650 7 |a Regression analysis.  |2 fast  |0 (OCoLC)fst01432090 
650 7 |a Statistics  |x Data processing.  |2 fast  |0 (OCoLC)fst01132113 
655 4 |a Electronic videos. 
710 2 |a 365 Careers,  |e issuing body. 
856 4 0 |u https://learning.oreilly.com/videos/~/9781838987671/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP