Practical MATLAB deep learning : a project-based approach /
Harness the power of MATLAB for deep-learning challenges. This book provides an introduction to deep learning and using MATLAB's deep-learning toolboxes. Youll see how these toolboxes provide the complete set of functions needed to implement all aspects of deep learning. Along the way, you'...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berkeley, CA :
Apress,
2020.
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- Intro
- Contents
- About the Authors
- About the Technical Reviewer
- Acknowledgements
- 1 What Is Deep Learning?
- 1.1 Deep Learning
- 1.2 History of Deep Learning
- 1.3 Neural Nets
- 1.3.1 Daylight Detector
- Problem
- Solution
- How It Works
- 1.3.2 XOR Neural Net
- Problem
- Solution
- How It Works
- 1.4 Deep Learning and Data
- 1.5 Types of Deep Learning
- 1.5.1 Multilayer Neural Network
- 1.5.2 Convolutional Neural Networks (CNN)
- 1.5.3 Recurrent Neural Network (RNN)
- 1.5.4 Long Short-Term Memory Networks (LSTMs)
- 1.5.5 Recursive Neural Network
- 1.5.6 Temporal Convolutional Machines (TCMs)
- 1.5.7 Stacked Autoencoders
- 1.5.8 Extreme Learning Machine (ELM)
- 1.5.9 Recursive Deep Learning
- 1.5.10 Generative Deep Learning
- 1.6 Applications of Deep Learning
- 1.7 Organization of the Book
- 2 MATLAB Machine Learning Toolboxes
- 2.1 Commercial MATLAB Software
- 2.1.1 MathWorks Products
- Deep Learning Toolbox
- Instrument Control Toolbox
- Statistics and Machine Learning Toolbox
- Computer Vision System Toolbox
- Image Acquisition Toolbox
- Parallel Computing Toolbox
- Text Analytics Toolbox
- 2.2 MATLAB Open Source
- 2.2.1 Deep Learn Toolbox
- 2.2.2 Deep Neural Network
- 2.2.3 MatConvNet
- 2.2.4 Pattern Recognition and Machine Learning Toolbox (PRMLT)
- 2.3 XOR Example
- 2.4 Training
- 2.5 Zermelo's Problem
- 3 Finding Circles with Deep Learning
- 3.1 Introduction
- 3.2 Structure
- 3.2.1 imageInputLayer
- 3.2.2 convolution2dLayer
- 3.2.3 batchNormalizationLayer
- 3.2.4 reluLayer
- 3.2.5 maxPooling2dLayer
- 3.2.6 fullyConnectedLayer
- 3.2.7 softmaxLayer
- 3.2.8 classificationLayer
- 3.2.9 Structuring the Layers
- 3.3 Generating Data: Ellipses and Circles
- 3.3.1 Problem
- 3.3.2 Solution
- 3.3.3 How It Works
- 3.4 Training and Testing
- 3.4.1 Problem
- 3.4.2 Solution
- 3.4.3 How It Works
- 4 Classifying Movies
- 4.1 Introduction
- 4.2 Generating a Movie Database
- 4.2.1 Problem
- 4.2.2 Solution
- 4.2.3 How It Works
- 4.3 Generating a Movie Watcher Database
- 4.3.1 Problem
- 4.3.2 Solution
- 4.3.3 How It Works
- 4.4 Training and Testing
- 4.4.1 Problem
- 4.4.2 Solution
- 4.4.3 How It Works
- 5 Algorithmic Deep Learning
- 5.1 Building a Detection Filter
- 5.1.1 Problem
- 5.1.2 Solution
- 5.1.3 How It Works
- 5.2 Simulating Fault Detection
- 5.2.1 Problem
- 5.2.2 Solution
- 5.2.3 How It Works
- 5.3 Testing and Training
- 5.3.1 Problem
- 5.3.2 Solution
- 5.3.3 How It Works
- 6 Tokamak Disruption Detection
- 6.1 Introduction
- 6.2 Numerical Model
- 6.2.1 Dynamics
- 6.2.2 Sensors
- 6.2.3 Disturbances
- 6.2.4 Controller
- 6.3 Dynamical Model
- 6.3.1 Problem
- 6.3.2 Solution
- 6.3.3 How It Works
- 6.4 Simulate the Plasma
- 6.4.1 Problem
- 6.4.2 Solution
- 6.4.3 How It Works
- 6.5 Control the Plasma
- 6.5.1 Problem
- 6.5.2 Solution
- 6.5.3 How It Works
- 6.6 Training and Testing
- 6.6.1 Problem
- 6.6.2 Solution