Cargando…

Practical MATLAB deep learning : a project-based approach /

Harness the power of MATLAB for deep-learning challenges. This book provides an introduction to deep learning and using MATLAB's deep-learning toolboxes. Youll see how these toolboxes provide the complete set of functions needed to implement all aspects of deep learning. Along the way, you'...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Paluszek, Michael
Otros Autores: Thomas, Stephanie
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berkeley, CA : Apress, 2020.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 a 4500
001 OR_on1140791494
003 OCoLC
005 20231017213018.0
006 m o d
007 cr un|---aucuu
008 200215s2020 cau ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d GW5XE  |d LQU  |d OCLCF  |d N$T  |d YDX  |d OCLCQ  |d UKAHL  |d UKMGB  |d COO  |d OCLCQ  |d OCLCO  |d COM  |d OCLCQ 
015 |a GBC067256  |2 bnb 
016 7 |a 019715472  |2 Uk 
019 |a 1141019091  |a 1142411219 
020 |a 9781484251249  |q (electronic bk.) 
020 |a 1484251245  |q (electronic bk.) 
020 |z 9781484251232 
020 |z 1484251237 
024 8 |a 10.1007/978-1-4842-5 
029 1 |a AU@  |b 000066784315 
029 1 |a UKMGB  |b 019715472 
035 |a (OCoLC)1140791494  |z (OCoLC)1141019091  |z (OCoLC)1142411219 
037 |a com.springer.onix.9781484251249  |b Springer Nature 
050 4 |a Q325.5 
082 0 4 |a 006.3/1  |2 23 
049 |a UAMI 
100 1 |a Paluszek, Michael. 
245 1 0 |a Practical MATLAB deep learning :  |b a project-based approach /  |c Michael Paluszek, Stephanie Thomas. 
260 |a Berkeley, CA :  |b Apress,  |c 2020. 
300 |a 1 online resource (260 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Intro -- Contents -- About the Authors -- About the Technical Reviewer -- Acknowledgements -- 1 What Is Deep Learning? -- 1.1 Deep Learning -- 1.2 History of Deep Learning -- 1.3 Neural Nets -- 1.3.1 Daylight Detector -- Problem -- Solution -- How It Works -- 1.3.2 XOR Neural Net -- Problem -- Solution -- How It Works -- 1.4 Deep Learning and Data -- 1.5 Types of Deep Learning -- 1.5.1 Multilayer Neural Network -- 1.5.2 Convolutional Neural Networks (CNN) -- 1.5.3 Recurrent Neural Network (RNN) -- 1.5.4 Long Short-Term Memory Networks (LSTMs) -- 1.5.5 Recursive Neural Network 
505 8 |a 1.5.6 Temporal Convolutional Machines (TCMs) -- 1.5.7 Stacked Autoencoders -- 1.5.8 Extreme Learning Machine (ELM) -- 1.5.9 Recursive Deep Learning -- 1.5.10 Generative Deep Learning -- 1.6 Applications of Deep Learning -- 1.7 Organization of the Book -- 2 MATLAB Machine Learning Toolboxes -- 2.1 Commercial MATLAB Software -- 2.1.1 MathWorks Products -- Deep Learning Toolbox -- Instrument Control Toolbox -- Statistics and Machine Learning Toolbox -- Computer Vision System Toolbox -- Image Acquisition Toolbox -- Parallel Computing Toolbox -- Text Analytics Toolbox -- 2.2 MATLAB Open Source 
505 8 |a 2.2.1 Deep Learn Toolbox -- 2.2.2 Deep Neural Network -- 2.2.3 MatConvNet -- 2.2.4 Pattern Recognition and Machine Learning Toolbox (PRMLT) -- 2.3 XOR Example -- 2.4 Training -- 2.5 Zermelo's Problem -- 3 Finding Circles with Deep Learning -- 3.1 Introduction -- 3.2 Structure -- 3.2.1 imageInputLayer -- 3.2.2 convolution2dLayer -- 3.2.3 batchNormalizationLayer -- 3.2.4 reluLayer -- 3.2.5 maxPooling2dLayer -- 3.2.6 fullyConnectedLayer -- 3.2.7 softmaxLayer -- 3.2.8 classificationLayer -- 3.2.9 Structuring the Layers -- 3.3 Generating Data: Ellipses and Circles -- 3.3.1 Problem -- 3.3.2 Solution 
505 8 |a 3.3.3 How It Works -- 3.4 Training and Testing -- 3.4.1 Problem -- 3.4.2 Solution -- 3.4.3 How It Works -- 4 Classifying Movies -- 4.1 Introduction -- 4.2 Generating a Movie Database -- 4.2.1 Problem -- 4.2.2 Solution -- 4.2.3 How It Works -- 4.3 Generating a Movie Watcher Database -- 4.3.1 Problem -- 4.3.2 Solution -- 4.3.3 How It Works -- 4.4 Training and Testing -- 4.4.1 Problem -- 4.4.2 Solution -- 4.4.3 How It Works -- 5 Algorithmic Deep Learning -- 5.1 Building a Detection Filter -- 5.1.1 Problem -- 5.1.2 Solution -- 5.1.3 How It Works -- 5.2 Simulating Fault Detection -- 5.2.1 Problem 
505 8 |a 5.2.2 Solution -- 5.2.3 How It Works -- 5.3 Testing and Training -- 5.3.1 Problem -- 5.3.2 Solution -- 5.3.3 How It Works -- 6 Tokamak Disruption Detection -- 6.1 Introduction -- 6.2 Numerical Model -- 6.2.1 Dynamics -- 6.2.2 Sensors -- 6.2.3 Disturbances -- 6.2.4 Controller -- 6.3 Dynamical Model -- 6.3.1 Problem -- 6.3.2 Solution -- 6.3.3 How It Works -- 6.4 Simulate the Plasma -- 6.4.1 Problem -- 6.4.2 Solution -- 6.4.3 How It Works -- 6.5 Control the Plasma -- 6.5.1 Problem -- 6.5.2 Solution -- 6.5.3 How It Works -- 6.6 Training and Testing -- 6.6.1 Problem -- 6.6.2 Solution 
500 |a 6.6.3 How It Works 
504 |a Includes bibliographical references and index. 
520 |a Harness the power of MATLAB for deep-learning challenges. This book provides an introduction to deep learning and using MATLAB's deep-learning toolboxes. Youll see how these toolboxes provide the complete set of functions needed to implement all aspects of deep learning. Along the way, you'll learn to model complex systems, including the stock market, natural language, and angles-only orbit determination. Youll cover dynamics and control, and integrate deep-learning algorithms and approaches using MATLAB. You'll also apply deep learning to aircraft navigation using images. Finally, you'll carry out classification of ballet pirouettes using an inertial measurement unit to experiment with MATLAB's hardware capabilities. You will: Explore deep learning using MATLAB and compare it to algorithms Write a deep learning function in MATLAB and train it with examples Use MATLAB toolboxes related to deep learning Implement tokamak disruption prediction. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a MATLAB. 
630 0 7 |a MATLAB.  |2 fast  |0 (OCoLC)fst01365096 
650 0 |a Machine learning. 
650 6 |a Apprentissage automatique. 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
700 1 |a Thomas, Stephanie. 
776 0 8 |i Print version:  |a Paluszek, Michael.  |t Practical MATLAB Deep Learning : A Project-Based Approach.  |d Berkeley, CA : Apress L.P., ©2020  |z 9781484251232 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484251249/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37404325 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6109026 
938 |a EBSCOhost  |b EBSC  |n 2373321 
938 |a YBP Library Services  |b YANK  |n 16653158 
994 |a 92  |b IZTAP