Cargando…

Real time analytics at Uber : bring SQL into everything /

"From determining the most convenient rider pickup points to predicting the fastest routes, Uber uses data-driven analytics to create seamless trip experiences. Uber's analysts and engineers wanted to run real-time analytics with deep learning models. But copying data from one source to an...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: O'Reilly Strata Data Conference
Formato: Electrónico Congresos, conferencias Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly Media, 2019.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1138875891
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 200203s2019 xx 041 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d TOH  |d OCLCO  |d OCLCQ  |d OCLCO 
029 1 |a AU@  |b 000066529555 
035 |a (OCoLC)1138875891 
037 |a CL0501000090  |b Safari Books Online 
050 4 |a QA76.54 
049 |a UAMI 
100 1 |a Luo, Zhenxiao,  |e onscreen presenter. 
245 1 0 |a Real time analytics at Uber :  |b bring SQL into everything /  |c Zhenxiao Luo. 
264 1 |a [Place of publication not identified] :  |b O'Reilly Media,  |c 2019. 
300 |a 1 online resource (1 streaming video file (40 min., 22 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Title from resource description page (Safari, viewed January 31, 2020). 
511 0 |a Presenter, Zhenxiao Luo. 
520 |a "From determining the most convenient rider pickup points to predicting the fastest routes, Uber uses data-driven analytics to create seamless trip experiences. Uber's analysts and engineers wanted to run real-time analytics with deep learning models. But copying data from one source to another is pretty expensive. Zhenxiao Luo explains how Uber supports real-time analytics with deep learning on the fly, without any data copying. He starts with the company's big data infrastructure, specifically Hadoop, Spark, and Presto, and discusses how Uber uses Presto as an interactive SQL engine and deployed Hadoop Distributed File System, Pinot, MySQL, and Elasticsearch as storage solutions. He then details how Uber built a Presto Elasticsearch connector from scratch to support real-time analytics on heterogeneous data. He concludes by sharing the company's production experience and roadmap. This session was recorded at the 2019 O'Reilly Strata Data Conference in San Francisco."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
610 2 0 |a Uber (Firm) 
610 2 7 |a Uber (Firm)  |2 fast  |0 (OCoLC)fst01995122 
650 0 |a Real-time data processing. 
650 0 |a Data flow computing. 
650 0 |a Data mining. 
650 6 |a Temps réel (Informatique) 
650 6 |a Flux de données (Informatique) 
650 6 |a Exploration de données (Informatique) 
650 7 |a Data flow computing.  |2 fast  |0 (OCoLC)fst00887940 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Real-time data processing.  |2 fast  |0 (OCoLC)fst01091219 
655 4 |a Electronic videos. 
711 2 |a O'Reilly Strata Data Conference  |d (2019 :  |c San Francisco, Calif.) 
856 4 0 |u https://learning.oreilly.com/videos/~/0636920339816/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP