How to build privacy and security into deep learning models /
"Yishay Carmiel (IntelligentWire) shares techniques and explains how data privacy will impact machine learning development and how future training and inference will be affected. Yishay first dives into why training on private data should be addressed, federated learning, and differential priva...
Clasificación: | Libro Electrónico |
---|---|
Formato: | Electrónico Video |
Idioma: | Inglés |
Publicado: |
[Place of publication not identified] :
O'Reilly Media,
2019.
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Ejemplares similares
-
Executive briefing : usable machine learning - lessons from Stanford and beyond /
Publicado: (2019) -
A framework to bootstrap and scale a machine learning function /
Publicado: (2019) -
O'Reilly Artificial Intelligence Conference 2017, San Francisco, CA.
Publicado: (2017) -
Working with time series : denoising and imputation frameworks to improve data density /
Publicado: (2019) -
O'Reilly Artificial Intelligence Conference 2017, New York, New York.
Publicado: (2017)