Cargando…

How to build privacy and security into deep learning models /

"Yishay Carmiel (IntelligentWire) shares techniques and explains how data privacy will impact machine learning development and how future training and inference will be affected. Yishay first dives into why training on private data should be addressed, federated learning, and differential priva...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly Media, 2019.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1135503666
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 200110s2019 xx 038 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d TOH  |d OCLCO  |d OCLCQ  |d OCLCO 
035 |a (OCoLC)1135503666 
037 |a CL0501000087  |b Safari Books Online 
050 4 |a TA347.A78 
049 |a UAMI 
100 1 |a Carmiel, Yishay,  |e on-screen presenter. 
245 1 0 |a How to build privacy and security into deep learning models /  |c Yishay Carmiel. 
264 1 |a [Place of publication not identified] :  |b O'Reilly Media,  |c 2019. 
300 |a 1 online resource (1 streaming video file (37 min., 44 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
511 0 |a Presenter, Yishay Carmiel. 
500 |a Title from title screen (viewed January 10, 2020). 
520 |a "Yishay Carmiel (IntelligentWire) shares techniques and explains how data privacy will impact machine learning development and how future training and inference will be affected. Yishay first dives into why training on private data should be addressed, federated learning, and differential privacy. He then discusses why inference on private data should be addressed, homomorphic encryption and neural networks, a polynomial approximation of neural networks, protecting data in neural networks, data reconstruction from neural networks, and methods and techniques to secure data reconstruction from neural networks. This session was recorded at the 2019 O'Reilly Artificial Intelligence Conference in New York."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
611 2 0 |a O'Reilly Artificial Intelligence Conference  |d (2019 :  |c New York, N.Y.) 
650 0 |a Computer security. 
650 0 |a Artificial intelligence. 
650 0 |a Machine learning. 
650 0 |a Privacy, Right of. 
650 0 |a Data protection. 
650 2 |a Computer Security 
650 2 |a Artificial Intelligence 
650 6 |a Sécurité informatique. 
650 6 |a Intelligence artificielle. 
650 6 |a Apprentissage automatique. 
650 6 |a Protection de l'information (Informatique) 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Computer security.  |2 fast  |0 (OCoLC)fst00872484 
650 7 |a Data protection.  |2 fast  |0 (OCoLC)fst00887958 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Privacy, Right of.  |2 fast  |0 (OCoLC)fst01077444 
655 4 |a Electronic videos. 
710 2 |a O'Reilly & Associates,  |e publisher. 
856 4 0 |u https://learning.oreilly.com/videos/~/0636920339366/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP