Cargando…

Artificial intelligence on human behavior : new insights into customer segmentation /

"In its raw state, web browsing data is both too detailed and too sparse to be comprehensible, let alone actionable. Melinda Han Williams (Dstillery) explores semantic embeddings as a novel approach for understanding observed digital consumer behavior and details how to use a semantic embedding...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly Media, 2019.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1135503651
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 200110s2019 xx 035 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d OCLCQ  |d OCLCO 
035 |a (OCoLC)1135503651 
037 |a CL0501000087  |b Safari Books Online 
050 4 |a TA347.A78 
049 |a UAMI 
100 1 |a Williams, Melinda Han,  |e on-screen presenter. 
245 1 0 |a Artificial intelligence on human behavior :  |b new insights into customer segmentation /  |c Melinda Han Williams. 
264 1 |a [Place of publication not identified] :  |b O'Reilly Media,  |c 2019. 
300 |a 1 online resource (1 streaming video file (34 min., 41 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
511 0 |a Presenter, Melinda Han Williams. 
500 |a Title from title screen (viewed January 10, 2020). 
520 |a "In its raw state, web browsing data is both too detailed and too sparse to be comprehensible, let alone actionable. Melinda Han Williams (Dstillery) explores semantic embeddings as a novel approach for understanding observed digital consumer behavior and details how to use a semantic embedding of web browsing behavior to drive unsupervised clustering for customer segmentation. You'll learn how Dstillery has trained a neural network on 15 billion behavioral interactions. The resulting model can be seen as a much lower dimensional embedding of the internet and, if projected into two or three dimensions, as an interactive map. This taxonomy of internet behavior can be used as the foundation for a number of applications, providing unparalleled insights into consumer behavior and needs. This session was recorded at the 2019 O'Reilly Strata Data Conference in San Francisco."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
611 2 0 |a Strata Conference  |d (2019 :  |c San Francisco, Calif.) 
650 0 |a Artificial intelligence. 
650 0 |a Machine learning. 
650 0 |a Marketing  |x Management  |x Data processing. 
650 0 |a Consumer behavior. 
650 0 |a Big data. 
650 2 |a Artificial Intelligence 
650 6 |a Intelligence artificielle. 
650 6 |a Apprentissage automatique. 
650 6 |a Consommateurs  |x Comportement. 
650 6 |a Données volumineuses. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Big data.  |2 fast  |0 (OCoLC)fst01892965 
650 7 |a Consumer behavior.  |2 fast  |0 (OCoLC)fst00876238 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Marketing  |x Management  |x Data processing.  |2 fast  |0 (OCoLC)fst01010214 
710 2 |a O'Reilly & Associates,  |e publisher. 
856 4 0 |u https://learning.oreilly.com/videos/~/0636920330165/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP