Cargando…

Dancing with qubits : how quantum computing works and how it can change the world /

Explore the principles and practicalities of quantum computing Key Features Discover how quantum computing works and delve into the math behind it with this quantum computing textbook Learn how it may become the most important new computer technology of the century Explore the inner workings of quan...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sutor, Robert S. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, Ltd., 2019.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright
  • Packt page
  • Dedication
  • Contributors
  • Contents
  • List of Figures
  • Preface
  • Chapter 1: Why Quantum Computing?
  • 1.1 The mysterious quantum bit
  • 1.2 I'm awake!
  • 1.3 Why quantum computing is different
  • 1.4 Applications to artificial intelligence
  • 1.5 Applications to financial services
  • 1.6 What about cryptography?
  • 1.7 Summary
  • I Foundations
  • Chapter 2: They're Not Old, They're Classics
  • 2.1 What's inside a computer?
  • 2.2 The power of two
  • 2.3 True or false?
  • 2.4 Logic circuits
  • 2.5 Addition, logically
  • 2.6 Algorithmically speaking
  • 2.7 Growth, exponential and otherwise
  • 2.8 How hard can that be?
  • 2.8.1 Sorting
  • 2.8.2 Searching
  • 2.9 Summary
  • Chapter 3: More Numbers than You Can Imagine
  • 3.1 Natural numbers
  • 3.2 Whole numbers
  • 3.3 Integers
  • 3.4 Rational numbers
  • 3.4.1 Fractions
  • 3.4.2 Getting formal again
  • 3.5 Real numbers
  • 3.5.1 Decimals
  • 3.5.2 Irrationals and limits
  • 3.5.3 Binary forms
  • 3.5.4 Continued fractions
  • 3.6 Structure
  • 3.6.1 Groups
  • 3.6.2 Rings
  • 3.6.3 Fields
  • 3.6.4 Even greater abstraction
  • 3.7 Modular arithmetic
  • 3.8 Doubling down
  • 3.9 Complex numbers, algebraically
  • 3.9.1 Arithmetic
  • 3.9.2 Conjugation
  • 3.9.3 Units
  • 3.9.4 Polynomials and roots
  • 3.10 Summary
  • Chapter 4: Planes and Circles and Spheres, Oh My
  • 4.1 Functions
  • 4.2 The real plane
  • 4.2.1 Moving to two dimensions
  • 4.2.2 Distance and length
  • 4.2.3 Geometric figures in the real plane
  • 4.2.4 Exponentials and logarithms
  • 4.3 Trigonometry
  • 4.3.1 The fundamental functions
  • 4.3.2 The inverse functions
  • 4.3.3 Additional identities
  • 4.4 From Cartesian to polar coordinates
  • 4.5 The complex ``plane''
  • 4.6 Real three dimensions
  • 4.7 Summary
  • Chapter 5: Dimensions
  • 5.1 R2 and C2
  • 5.2 Vector spaces
  • 5.3 Linear maps
  • 5.3.1 Algebraic structure of linear transformations
  • 5.3.2 Example linear transformations on R2
  • 5.4 Matrices
  • 5.4.1 Notation and terminology
  • 5.4.2 Matrices and linear maps
  • 5.5 Matrix algebra
  • 5.5.1 Arithmetic of general matrices
  • 5.5.2 Arithmetic of square matrices
  • 5.6 Cartesian products
  • 5.7 Length and preserving it
  • 5.7.1 Dot products
  • 5.7.2 Inner products
  • 5.7.3 Euclidean norm
  • 5.7.4 Reflections again
  • 5.7.5 Unitary transformations
  • 5.7.6 Systems of linear equations
  • 5.8 Change of basis
  • 5.9 Eigenvectors and eigenvalues
  • 5.10 Direct sums
  • 5.11 Homomorphisms
  • 5.11.1 Group homomorphisms
  • 5.11.2 Ring and field homomorphisms
  • 5.11.3 Vector space homomorphisms
  • 5.12 Summary
  • Chapter 6: What Do You Mean ""Probably""?
  • 6.1 Being discrete
  • 6.2 More formally
  • 6.3 Wrong again?
  • 6.4 Probability and error detection
  • 6.5 Randomness
  • 6.6 Expectation
  • 6.7 Markov and Chebyshev go to the casino
  • 6.8 Summary
  • II Quantum Computing
  • Chapter 7: One Qubit
  • 7.1 Introducing quantum bits
  • 7.2 Bras and kets