Cargando…

Industrial machine learning : using artificial intelligence as a transformational disruptor /

Understand the industrialization of machine learning (ML) and take the first steps toward identifying and generating the transformational disruptors of artificial intelligence (AI). You will learn to apply ML to data lakes in various industries, supplying data professionals with the advanced skills...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Vermeulen, Andreas François (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Apress, [2020]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1131681067
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 191216s2020 nyua ob 001 0 eng d
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d YDX  |d AU@  |d OCLCF  |d UKMGB  |d UPM  |d UMI  |d OCLCQ  |d SNK  |d VT2  |d N$T  |d OCLCO  |d OCLCQ  |d OCLCO  |d KSU  |d OCLCQ  |d OCLCO 
015 |a GBB9K3168  |2 bnb 
016 7 |a 019637707  |2 Uk 
019 |a 1129400113  |a 1130759353  |a 1134693985  |a 1140553237  |a 1142792768  |a 1156330746  |a 1162774676  |a 1192328890  |a 1204062233  |a 1240515715 
020 |a 9781484253168  |q (electronic bk.) 
020 |a 1484253167  |q (electronic bk.) 
020 |a 9781484253175  |q (print) 
020 |a 1484253175 
020 |z 9781484253151 
020 |z 1484253159 
024 7 |a 10.1007/978-1-4842-5316-8  |2 doi 
029 1 |a AU@  |b 000066283462 
029 1 |a AU@  |b 000066440092 
029 1 |a AU@  |b 000070460172 
029 1 |a UKMGB  |b 019637707 
035 |a (OCoLC)1131681067  |z (OCoLC)1129400113  |z (OCoLC)1130759353  |z (OCoLC)1134693985  |z (OCoLC)1140553237  |z (OCoLC)1142792768  |z (OCoLC)1156330746  |z (OCoLC)1162774676  |z (OCoLC)1192328890  |z (OCoLC)1204062233  |z (OCoLC)1240515715 
037 |a com.springer.onix.9781484253168  |b Springer Nature 
050 4 |a Q325.5  |b .V47 2020eb 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3/1  |2 23 
049 |a UAMI 
100 1 |a Vermeulen, Andreas François,  |e author. 
245 1 0 |a Industrial machine learning :  |b using artificial intelligence as a transformational disruptor /  |c Andreas François Vermeulen. 
264 1 |a New York :  |b Apress,  |c [2020] 
264 4 |c ©2020 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed December 16, 2019). 
504 |a Includes bibliographical references and index. 
505 0 |a Chapter 1: Introduction -- Chapter 2: Background Knowledge -- Chapter 3: Classic Machine Learning -- Chapter 4: Supervised Learning: Using labeled data for Insights -- Chapter 5: Supervised Learning: Advanced Algorithms -- Chapter 6: Unsupervised Learning: Using Unlabeled Data -- Chapter 7: Unsupervised Learning: Neural Network Toolkits -- Chapter 8: Unsupervised Learning: Deep Learning -- Chapter 9: Reinforcement Learning: Using Newly Gained Knowledge for Insights -- Chapter 10: Evolutionary Computing -- Chapter 11: Mechatronics -- Chapter 12: Robotics Revolution -- Chapter 13: Fourth Industrial Revolution (4IR) -- Chapter 14: Industrialized Artificial Intelligence -- Chapter 15: Final Industrialization Project -- Appendix: Reference Material 
520 |a Understand the industrialization of machine learning (ML) and take the first steps toward identifying and generating the transformational disruptors of artificial intelligence (AI). You will learn to apply ML to data lakes in various industries, supplying data professionals with the advanced skills required to handle the future of data engineering and data science. Data lakes currently generated by worldwide industrialized business activities are projected to reach 35 zettabytes (ZB) as the Fourth Industrial Revolution produces an exponential increase of volume, velocity, variety, variability, veracity, visualization, and value. Industrialization of ML evolves from AI and studying pattern recognition against the increasingly unstructured resource stored in data lakes. Industrial Machine Learning supplies advanced, yet practical examples in different industries, including finance, public safety, health care, transportation, manufactory, supply chain, 3D printing, education, research, and data science. The book covers: supervised learning, unsupervised learning, reinforcement learning, evolutionary computing principles, soft robotics disruptors, and hard robotics disruptors. You will: Generate and identify transformational disruptors of artificial intelligence (AI) Understand the field of machine learning (ML) and apply it to handle big data and process the data lakes in your environment Hone the skills required to handle the future of data engineering and data science. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 6 |a Apprentissage automatique. 
650 7 |a Machine learning  |2 fast 
776 0 8 |i Print version:  |a Vermeulen, Andreas François.  |t Industrial machine learning.  |d New York : Apress, [2020]  |z 1484253159  |z 9781484253151  |w (OCoLC)1112129437 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484253168/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a EBSCOhost  |b EBSC  |n 2321023 
938 |a YBP Library Services  |b YANK  |n 16562050 
994 |a 92  |b IZTAP