Cargando…

Deep learning for recommender systems, or How to compare pears with apples /

"Recommender systems support the decision making processes of customers with personalized suggestions. These widely used systems influence the daily life of almost everyone across domains like ecommerce, social media, and entertainment. However, the efficient generation of relevant recommendati...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: O'Reilly Artificial Intelligence Conference
Formato: Electrónico Congresos, conferencias Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly, 2019.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1127651205
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 191115s2019 xx 042 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d UMI  |d OCLCF  |d OCLCQ  |d OCLCO 
029 1 |a AU@  |b 000066261540 
035 |a (OCoLC)1127651205 
037 |a CL0501000081  |b Safari Books Online 
050 4 |a Z667.63 
049 |a UAMI 
100 1 |a Kurovski, Marcel,  |e on-screen presenter. 
245 1 0 |a Deep learning for recommender systems, or How to compare pears with apples /  |c Marcel Kurovski. 
264 1 |a [Place of publication not identified] :  |b O'Reilly,  |c 2019. 
300 |a 1 online resource (1 streaming video file (41 min., 51 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Title from title screen (viewed November 14, 2019). 
518 |a Recorded April 18, 2019 at the O'Reilly Artificial Intelligence Conference in New York. 
511 0 |a Presenter, Marcel Kurovski. 
520 |a "Recommender systems support the decision making processes of customers with personalized suggestions. These widely used systems influence the daily life of almost everyone across domains like ecommerce, social media, and entertainment. However, the efficient generation of relevant recommendations in large-scale systems is a very complex task. In order to provide personalization, engines and algorithms need to capture users' varying tastes and find mostly nonlinear dependencies between them and a multitude of items. Enormous data sparsity and ambitious real-time requirements further complicate this challenge. At the same time, deep learning has been proven to solve complex tasks like object or speech recognition where traditional machine learning failed or showed mediocre performance. Join Marcel Kurovski (inovex) to explore a use case for vehicle recommendations at mobile.de, Germany's biggest online vehicle market. Marcel shares a novel regularization technique for the optimization criterion and evaluates it against various baselines. To achieve high scalability, he combines this method with strategies for efficient candidate generation based on user and item embeddings--providing a holistic solution for candidate generation and ranking. The proposed approach outperforms collaborative filtering and hybrid collaborative-content-based filtering by 73% and 143% for MAP@5. It also scales well for millions of items and users returning recommendations in tens of milliseconds."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Recommender systems (Information filtering) 
650 0 |a Machine learning. 
650 0 |a Customer relations  |x Management. 
650 0 |a Electronic commerce. 
650 6 |a Systèmes de recommandation (Filtrage d'information) 
650 6 |a Apprentissage automatique. 
650 6 |a Commerce électronique. 
650 7 |a Customer relations  |x Management.  |2 fast  |0 (OCoLC)fst00885539 
650 7 |a Electronic commerce.  |2 fast  |0 (OCoLC)fst00906906 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Recommender systems (Information filtering)  |2 fast  |0 (OCoLC)fst01743365 
711 2 |a O'Reilly Artificial Intelligence Conference  |d (2019 :  |c New York, N.Y.)  |j issuing body. 
856 4 0 |u https://learning.oreilly.com/videos/~/0636920339663/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP