Cargando…

Deep learning for time series data /

"Arun Kejariwal (Independent) and Ira Cohen (Anodot) share a novel two-step approach for building more reliable prediction models by integrating anomalies in them. The first step uses anomaly detection algorithms to discover anomalies in a time series in the training data. In the second, multip...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: O'Reilly Artificial Intelligence Conference
Formato: Electrónico Congresos, conferencias Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly, 2019.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1127651204
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 191115s2019 xx 043 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d UMI  |d OCLCF  |d TOH  |d OCLCO  |d NZCPL  |d OCLCQ  |d OCLCO 
019 |a 1224589524  |a 1232114554  |a 1305871088 
020 |z 0636920339618 
024 8 |a 0636920339632 
029 1 |a AU@  |b 000066261539 
035 |a (OCoLC)1127651204  |z (OCoLC)1224589524  |z (OCoLC)1232114554  |z (OCoLC)1305871088 
037 |a CL0501000081  |b Safari Books Online 
050 4 |a Q325.5 
049 |a UAMI 
100 1 |a Kejariwal, Arun,  |e on-screen presenter. 
245 1 0 |a Deep learning for time series data /  |c Arun Kejariwal, Ira Cohen. 
264 1 |a [Place of publication not identified] :  |b O'Reilly,  |c 2019. 
300 |a 1 online resource (1 streaming video file (42 min., 29 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a video file 
500 |a Title from title screen (viewed November 14, 2019). 
518 |a Recorded at the 2019 O'Reilly Artificial Intelligence Conference in New York. 
511 0 |a Presenters, Arun Kejariwal, Ira Cohen. 
520 |a "Arun Kejariwal (Independent) and Ira Cohen (Anodot) share a novel two-step approach for building more reliable prediction models by integrating anomalies in them. The first step uses anomaly detection algorithms to discover anomalies in a time series in the training data. In the second, multiple prediction models, including time series models and deep networks, are trained, enriching the training data with the information about the anomalies discovered in the first step. Anomaly detection for individual time series is a necessary but insufficient step due to the fact that anomaly detection over a set of live data streams may result in anomaly fatigue, thereby limiting effective decision making. One way to address the above is to carry out anomaly detection in a multidimensional space. However, this is typically very expensive computationally and hence not suitable for live data streams. Another approach is to carry out anomaly detection on individual data streams and then leverage correlation analysis to minimize false positives, which in turn helps in surfacing actionable insights faster. Anomaly detection for individual time series is a necessary but insufficient step due to the fact that anomaly detection over a set of live data streams may result in anomaly fatigue, thereby limiting effective decision making. One way to address the above is to carry out anomaly detection in a multidimensional space. However, this is typically very expensive computationally and hence not suitable for live data streams. Another approach is to carry out anomaly detection on individual data streams and then leverage correlation analysis to minimize false positives, which in turn helps in surfacing actionable insights faster."--Resource description page 
542 |f Copyright © O'Reilly Media, Incorporated. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Electronic data processing. 
650 6 |a Apprentissage automatique. 
650 7 |a Electronic data processing.  |2 fast  |0 (OCoLC)fst00906956 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
655 4 |a Electronic videos. 
700 1 |a Cohen, Ira M.,  |e on-screen presenter. 
711 2 |a O'Reilly Artificial Intelligence Conference  |d (2019 :  |c New York, N.Y.)  |j issuing body. 
856 4 0 |u https://learning.oreilly.com/videos/~/0636920339632/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP