Cargando…

Using AutoML to automate selection of machine learning models and hyperparameters /

"Automated machine learning (AutoML) enables both data scientists and domain experts (with limited machine learning training) to be productive and efficient. In recent years, AutoML has fostered a fundamental shift in how organizations approach machine learning, making it more accessible to bot...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: O'Reilly Artificial Intelligence Conference
Formato: Electrónico Congresos, conferencias Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly, 2019.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1127651203
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 191115s2019 xx 043 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d UMI  |d OCLCF  |d OCLCQ  |d OCLCO 
029 1 |a AU@  |b 000066261507 
035 |a (OCoLC)1127651203 
037 |a CL0501000081  |b Safari Books Online 
050 4 |a Q325.5 
049 |a UAMI 
100 1 |a Lazzeri, Francesca,  |e on-screen presenter. 
245 1 0 |a Using AutoML to automate selection of machine learning models and hyperparameters /  |c Francesca Lazzeri, Wee Hyong Tok. 
246 3 |a Using Auto Machine Learning to automate selection of machine learning models and hyperparameters 
264 1 |a [Place of publication not identified] :  |b O'Reilly,  |c 2019. 
300 |a 1 online resource (1 streaming video file (42 min., 33 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Title from title screen (viewed November 14, 2019). 
518 |a Recorded at the 2019 O'Reilly Artificial Intelligence Conference in New York. 
511 0 |a Presenters, Francesca Lazzeri, Wee Hyong Tok. 
520 |a "Automated machine learning (AutoML) enables both data scientists and domain experts (with limited machine learning training) to be productive and efficient. In recent years, AutoML has fostered a fundamental shift in how organizations approach machine learning, making it more accessible to both experts and nonexperts. Most real-world data science projects are time-consuming, resource intensive, and challenging. Besides data preparation, data cleaning, and feature engineering, data scientists often spend a significant amount of time on model selection and tuning of hyperparameters. Automated machine learning changes that, making it easier to build and use machine learning models in the real world. Francesca Lazzeri and Wee Hyong Tok (Microsoft) lead a gentle introduction to how AutoML works and the state-of-art AutoML capabilities that are available. You'll learn how to use AutoML to automate selection of machine learning models and automate tuning of hyperparameters."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Electronic data processing. 
650 6 |a Apprentissage automatique. 
650 7 |a Electronic data processing.  |2 fast  |0 (OCoLC)fst00906956 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
700 1 |a Tok, Wee-Hyong,  |e on-screen presenter. 
711 2 |a O'Reilly Artificial Intelligence Conference  |d (2019 :  |c New York, N.Y.)  |j issuing body. 
856 4 0 |u https://learning.oreilly.com/videos/~/0636920339601/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP