Cargando…

Turn devices into data scientists--at the edge /

"Today's approach to processing streaming data is based on legacy big-data centric architectures, the cloud, and the assumption that organizations have access to data scientists to make sense of it all--leaving organizations increasingly overwhelmed. Simon Crosby (SWIM. AI) shares a new ar...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: O'Reilly Artificial Intelligence Conference
Formato: Electrónico Congresos, conferencias Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly, 2019.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1127651200
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 191115s2019 xx 036 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d UMI  |d OCLCF  |d OCLCQ  |d OCLCO 
029 1 |a AU@  |b 000066261509 
035 |a (OCoLC)1127651200 
037 |a CL0501000081  |b Safari Books Online 
050 4 |a QA76.9.B45 
049 |a UAMI 
100 1 |a Crosby, Simon,  |e on-screen presenter. 
245 1 0 |a Turn devices into data scientists--at the edge /  |c Simon Crosby. 
264 1 |a [Place of publication not identified] :  |b O'Reilly,  |c 2019. 
300 |a 1 online resource (1 streaming video file (35 min., 33 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
511 0 |a Presenter, Simon Crosby. 
500 |a Title from title screen (viewed November 14, 2019). 
518 |a Recorded at the 2019 O'Reilly Artificial Intelligence Conference in New York. 
520 |a "Today's approach to processing streaming data is based on legacy big-data centric architectures, the cloud, and the assumption that organizations have access to data scientists to make sense of it all--leaving organizations increasingly overwhelmed. Simon Crosby (SWIM. AI) shares a new architecture for edge intelligence that turns this thinking on its head. Edge intelligence (encompassing analytics, learning and prediction, and edge computing) can frequently be accomplished on the fly on streaming data, cheaply, at the edge, without data scientists. Simon demonstrates how you can save up to $5,000 a month in cloud processing and storage costs while delivering accurate predictions that can transform outcomes, using well-established architectural pillars, such as the distributed actor model, to process voluminous real-time data at the edge, along with the rich commons of open source analytics and learning tools like Flink and Spark, on nothing more than a $200 device such as an NVIDIA Jetson. The key insight is to use streaming data to build a digital twin model on the fly at the edge, avoiding a ton of complexity and infrastructure costs. Instead, a user defines the entities in their environment (e.g., traffic intersections, compressors, or assembly robots) that deliver data. Using the stateful distributed actor model, you can dynamically build a digital twin (actor) model of the real-world from the data, linking twins based on their relationships. Each digital twin reduces, labels, and analyzes its data and self-trains a machine learning model to predict future performance, at the edge, discarding the original data. This method needs only a tiny fraction of the resources of a big data solution and delivers results in real time. As a result, it bypasses the dev, ops, and data science challenges of edge intelligence, effectively turning devices into data scientists, or at least, building data science twins for entities in the real world."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Big data  |x Data processing. 
650 0 |a Machine learning. 
650 0 |a Artificial intelligence. 
650 0 |a Cloud computing. 
650 2 |a Artificial Intelligence 
650 6 |a Données volumineuses  |x Informatique. 
650 6 |a Apprentissage automatique. 
650 6 |a Intelligence artificielle. 
650 6 |a Infonuagique. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Cloud computing.  |2 fast  |0 (OCoLC)fst01745899 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
711 2 |a O'Reilly Artificial Intelligence Conference  |d (2019 :  |c New York, N.Y.)  |j issuing body. 
856 4 0 |u https://learning.oreilly.com/videos/~/0636920339458/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP