Cargando…

Learning from multiagent emergent behaviors in a simulated environment /

"Traditionally, determining the most efficient designs and practices--whether for determining how store merchandise should be arranged or where people and machines should be laid out in a factory floor--has required vast amounts of data and human assessment. These efficient designs can be the d...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: O'Reilly Artificial Intelligence Conference
Formato: Electrónico Congresos, conferencias Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly, 2019.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1127651199
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 191115s2019 xx 045 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d UMI  |d OCLCF  |d OCLCQ  |d OCLCO 
029 1 |a AU@  |b 000066261625 
035 |a (OCoLC)1127651199 
037 |a CL0501000081  |b Safari Books Online 
050 4 |a Q325.5 
049 |a UAMI 
100 1 |a Lange, Danny B.,  |e on-screen presenter. 
245 1 0 |a Learning from multiagent emergent behaviors in a simulated environment /  |c Danny Lange. 
264 1 |a [Place of publication not identified] :  |b O'Reilly,  |c 2019. 
300 |a 1 online resource (1 streaming video file (44 min., 15 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
511 0 |a Presenter, Danny Lange. 
500 |a Title from title screen (viewed November 14, 2019). 
518 |a Recorded at the 2019 O'Reilly Artificial Intelligence Conference in New York. 
520 |a "Traditionally, determining the most efficient designs and practices--whether for determining how store merchandise should be arranged or where people and machines should be laid out in a factory floor--has required vast amounts of data and human assessment. These efficient designs can be the difference between a thriving company and a struggling one. Recent advancements in multiagent reinforcement learning within virtual environments, such as DeepMind's Capture the Flag or Open AI's Learning to Compete and Cooperate, have led to a novel approach for tackling efficient design and practices. Danny Lange (Unity Technologies) explains how observing emergent behaviors of multiple AI agents in a simulated virtual environment can lead to the most optimal designs and real-world practices, all without introducing human bias or the need for vast amounts of data."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Artificial intelligence. 
650 2 |a Artificial Intelligence 
650 6 |a Apprentissage automatique. 
650 6 |a Intelligence artificielle. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
711 2 |a O'Reilly Artificial Intelligence Conference  |d (2019 :  |c New York, N.Y.)  |j issuing body. 
856 4 0 |u https://learning.oreilly.com/videos/~/0636920339427/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP