Cargando…

Fraud detection without feature engineering /

"Pamela Vagata (Stripe) explains how Stripe has applied deep learning techniques to predict fraud from raw behavioral data. Since fraud detection is a critical business problem for Stripe, the company already had a well-tuned feature-engineered model for comparison. Stripe found that the deep l...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: O'Reilly Artificial Intelligence Conference
Formato: Electrónico Congresos, conferencias Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly, 2019.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1127651167
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 191115s2019 xx 041 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d UMI  |d OCLCF  |d OCLCQ  |d OCLCO 
029 1 |a AU@  |b 000066431087 
035 |a (OCoLC)1127651167 
037 |a CL0501000081  |b Safari Books Online 
050 4 |a QA76.9.A25 
049 |a UAMI 
100 1 |a Vagata, Pamela,  |e on-screen presenter. 
245 1 0 |a Fraud detection without feature engineering /  |c Pamela Vagata. 
264 1 |a [Place of publication not identified] :  |b O'Reilly,  |c 2019. 
300 |a 1 online resource (1 streaming video file (40 min., 11 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
511 0 |a Presenter, Pamela Vagata. 
500 |a Title from title screen (viewed November 14, 2019). 
518 |a Recorded at the 2019 O'Reilly Artificial Intelligence Conference in New York. 
520 |a "Pamela Vagata (Stripe) explains how Stripe has applied deep learning techniques to predict fraud from raw behavioral data. Since fraud detection is a critical business problem for Stripe, the company already had a well-tuned feature-engineered model for comparison. Stripe found that the deep learning model outperforms the feature-engineered model both on predictive performance and in the effort spent on data engineering, model construction, tuning, and maintenance. Join in to discover how common industry practice could shift toward deeper models trained end to end and away from labor-intensive feature engineering."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Computer security. 
650 0 |a Machine learning. 
650 0 |a Computer crimes  |x Investigation. 
650 0 |a Computer networks  |x Security measures. 
650 2 |a Computer Security 
650 6 |a Sécurité informatique. 
650 6 |a Apprentissage automatique. 
650 6 |a Criminalité informatique  |x Enquêtes. 
650 6 |a Réseaux d'ordinateurs  |x Sécurité  |x Mesures. 
650 7 |a Computer crimes  |x Investigation.  |2 fast  |0 (OCoLC)fst00872065 
650 7 |a Computer networks  |x Security measures.  |2 fast  |0 (OCoLC)fst00872341 
650 7 |a Computer security.  |2 fast  |0 (OCoLC)fst00872484 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
711 2 |a O'Reilly Artificial Intelligence Conference  |d (2019 :  |c New York, N.Y.)  |j issuing body. 
856 4 0 |u https://learning.oreilly.com/videos/~/0636920339540/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP