An introduction to machine learning interpretability : an applied perspective on fairness, accountability, transparency, and explainable AI /
Innovation and competition are driving analysts and data scientists toward increasingly complex predictive modeling and machine learning algorithms. This complexity makes these models accurate, but can also make their predictions difficult to understand. When accuracy outpaces interpretability, huma...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | Hall, Patrick (Autor), Gill, Navdeep (Autor) |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Sebastopol, CA :
O'Reilly Media,
[2019]
|
Edición: | Second edition. |
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Ejemplares similares
-
An introduction to machine learning interpretability : an applied perspective on fairness, accountability, transparency, and explainable AI /
por: Hall, Patrick, et al.
Publicado: (2018) -
AI and Machine Learning for Coders
por: Moroney, Laurence
Publicado: (2020) -
Applied machine learning and AI for engineers : solve business problems that can't be solved algorithmically /
por: Prosise, Jeff
Publicado: (2023) -
Understanding support vector machines /
por: Géron, Aurélien
Publicado: (2017) -
AI and machine learning for coders : a programmer's guide to artificial intelligence /
por: Moroney, Laurence
Publicado: (2023)