Cargando…

An introduction to machine learning interpretability : an applied perspective on fairness, accountability, transparency, and explainable AI /

Innovation and competition are driving analysts and data scientists toward increasingly complex predictive modeling and machine learning algorithms. This complexity makes these models accurate, but can also make their predictions difficult to understand. When accuracy outpaces interpretability, huma...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Hall, Patrick (Autor), Gill, Navdeep (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly Media, [2019]
Edición:Second edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1127579464
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 191114s2019 caua ob 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d CZL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |z 9781098115470 
035 |a (OCoLC)1127579464 
037 |a CL0501000082  |b Safari Books Online 
050 4 |a Q325.5 
049 |a UAMI 
100 1 |a Hall, Patrick,  |e author. 
245 1 3 |a An introduction to machine learning interpretability :  |b an applied perspective on fairness, accountability, transparency, and explainable AI /  |c Patrick Hall and Navdeep Gill. 
246 3 0 |a Applied perspective on fairness, accountability, transparency, and explainable AI 
250 |a Second edition. 
264 1 |a Sebastopol, CA :  |b O'Reilly Media,  |c [2019] 
264 4 |c Ã2019 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references. 
588 0 |a Online resource; title from title page (viewed November 12, 2019). 
520 |a Innovation and competition are driving analysts and data scientists toward increasingly complex predictive modeling and machine learning algorithms. This complexity makes these models accurate, but can also make their predictions difficult to understand. When accuracy outpaces interpretability, human trust suffers, affecting business adoption, model validation efforts, and regulatory oversight. In the updated edition of this ebook, Patrick Hall and Navdeep Gill from H2O.ai introduce the idea of machine learning interpretability and examine a set of machine learning techniques, algorithms, and models to help data scientists improve the accuracy of their predictive models while maintaining a high degree of interpretability. While some industries require model transparency, such as banking, insurance, and healthcare, machine learning practitioners in almost any vertical will likely benefit from incorporating the discussed interpretable models, and debugging, explanation, and fairness approaches into their workflow. This second edition discusses new, exact model explanation techniques, and de-emphasizes the trade-off between accuracy and interpretability. This edition also includes up-to-date information on cutting-edge interpretability techniques and new figures to illustrate the concepts of trust and understanding in machine learning models. Learn how machine learning and predictive modeling are applied in practice Understand social and commercial motivations for machine learning interpretability, fairness, accountability, and transparency Get a definition of interpretability and learn about the groups leading interpretability research Examine a taxonomy for classifying and describing interpretable machine learning approaches Gain familiarity with new and more traditional interpretable modeling approaches See numerous techniques for understanding and explaining models and predictions Read about methods to debug prediction errors, sociological bias, and security vulnerabilities in predictive models Get a feel for the techniques in action with code examples. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Artificial intelligence. 
650 2 |a Artificial Intelligence 
650 2 |a Machine Learning 
650 6 |a Apprentissage automatique. 
650 6 |a Intelligence artificielle. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence  |2 fast 
650 7 |a Machine learning  |2 fast 
700 1 |a Gill, Navdeep,  |e author. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781098115487/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP