Manipulating and Measuring Model Interpretability /
"Machine learning is increasingly used to make decisions that affect people's lives in critical domains like criminal justice, fair lending, and medicine. While most of the research in machine learning focuses on improving the performance of models on held-out datasets, this is seldom enou...
Clasificación: | Libro Electrónico |
---|---|
Autor Corporativo: | O'Reilly Artificial Intelligence Conference |
Formato: | Electrónico Congresos, conferencias Video |
Idioma: | Inglés |
Publicado: |
[Place of publication not identified] :
O'Reilly Media,
2019.
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Ejemplares similares
-
An introduction to machine learning interpretability : an applied perspective on fairness, accountability, transparency, and explainable AI /
por: Hall, Patrick, et al.
Publicado: (2018) -
Advanced model deployments with TensorFlow serving /
Publicado: (2020) -
TensorFlow model optimization : quantization and pruning /
Publicado: (2020) -
Introduction to deep learning models with TensorFlow : learn how to work with TensorFlow to create and run a TensorFlow graph, and build a deep learning model /
Publicado: (2017) -
Training, evaluating, and tuning deep neural network models with TensorFlow-Slim : advanced topics in training, evaluating, and tuning deep neural network models /
Publicado: (2017)