Cargando…

Manipulating and Measuring Model Interpretability /

"Machine learning is increasingly used to make decisions that affect people's lives in critical domains like criminal justice, fair lending, and medicine. While most of the research in machine learning focuses on improving the performance of models on held-out datasets, this is seldom enou...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: O'Reilly Artificial Intelligence Conference
Formato: Electrónico Congresos, conferencias Video
Idioma:Inglés
Publicado: [Place of publication not identified] : O'Reilly Media, 2019.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cgm a2200000 i 4500
001 OR_on1127579404
003 OCoLC
005 20231017213018.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 191114s2019 xx 040 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d TOH  |d OCLCO  |d OCLCQ  |d OCLCO 
029 1 |a AU@  |b 000066431084 
035 |a (OCoLC)1127579404 
037 |a CL0501000082  |b Safari Books Online 
050 4 |a Q325.5 
049 |a UAMI 
100 1 |a Poursabzi-Sangdeh, Forough,  |e on-screen presenter. 
245 1 0 |a Manipulating and Measuring Model Interpretability /  |c Forough Poursabzi-Sangdeh. 
264 1 |a [Place of publication not identified] :  |b O'Reilly Media,  |c 2019. 
300 |a 1 online resource (1 streaming video file (39 min., 42 sec.)) 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Title from resource description page (Safari, viewed November 12, 2019). 
511 0 |a Presenter, Forough Poursabzi-Sangdeh. 
520 |a "Machine learning is increasingly used to make decisions that affect people's lives in critical domains like criminal justice, fair lending, and medicine. While most of the research in machine learning focuses on improving the performance of models on held-out datasets, this is seldom enough to convince end users that these models are trustworthy and reliable in the wild. To address this problem, a new line of research has emerged that focuses on developing interpretable machine learning methods and helping end users make informed decisions. Despite the growing body of work in developing interpretable models, there is still no consensus on the definition and quantification of interpretability ... Forough approaches the problem of interpretability from an interdisciplinary perspective built on decades of research in psychology, cognitive science, and social science to understand human behavior and trust. She describes a set of controlled user experiments in which researchers manipulated various design factors in models that are commonly thought to make them more or less interpretable and measured their influence on users' behavior."--Resource description page 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Artificial intelligence. 
650 2 |a Artificial Intelligence 
650 6 |a Apprentissage automatique. 
650 6 |a Intelligence artificielle. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
655 4 |a Electronic videos. 
711 2 |a O'Reilly Artificial Intelligence Conference  |d (15-18 April 2019 :  |c New York, N.Y.)  |j issuing body. 
856 4 0 |u https://learning.oreilly.com/videos/~/0636920339724/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP