Cargando…

Data architecture : a primer for the data scientist /

Over the past 5 years, the concept of big data has matured, data science has grown exponentially, and data architecture has become a standard part of organizational decision-making. Throughout all this change, the basic principles that shape the architecture of data have remained the same. There rem...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Inmon, William H. (Autor), Linstedt, Daniel (Autor), Levins, Mary (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London, United Kingdom ; San Diego, CA : Academic Press, [2019]
Edición:Second edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1126570329
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 191106s2019 enka o 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d UMI  |d OCLCF  |d VLY  |d DST  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9780128169179 
020 |a 0128169176 
020 |z 9780128169162 
035 |a (OCoLC)1126570329 
037 |a CL0501000080  |b Safari Books Online 
050 4 |a QA76.9.D37 
082 0 4 |a 658.40380285574  |2 23 
049 |a UAMI 
100 1 |a Inmon, William H.,  |e author. 
245 1 0 |a Data architecture :  |b a primer for the data scientist /  |c W.H. Inmon, Daniel Linstedt, Mary Levins. 
250 |a Second edition. 
264 1 |a London, United Kingdom ;  |a San Diego, CA :  |b Academic Press,  |c [2019] 
264 4 |c ©2019 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (Safari, viewed October 31, 2019). 
500 |a Includes index. 
520 |a Over the past 5 years, the concept of big data has matured, data science has grown exponentially, and data architecture has become a standard part of organizational decision-making. Throughout all this change, the basic principles that shape the architecture of data have remained the same. There remains a need for people to take a look at the "bigger picture" and to understand where their data fit into the grand scheme of things. Data Architecture: A Primer for the Data Scientist, Second Edition addresses the larger architectural picture of how big data fits within the existing information infrastructure or data warehousing systems. This is an essential topic not only for data scientists, analysts, and managers but also for researchers and engineers who increasingly need to deal with large and complex sets of data. Until data are gathered and can be placed into an existing framework or architecture, they cannot be used to their full potential. Drawing upon years of practical experience and using numerous examples and case studies from across various industries, the authors seek to explain this larger picture into which big data fits, giving data scientists the necessary context for how pieces of the puzzle should fit together. New case studies include expanded coverage of textual management and analytics New chapters on visualization and big data Discussion of new visualizations of the end-state architecture 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Data warehousing. 
650 0 |a Big data. 
650 0 |a Electronic data processing. 
650 0 |a Information retrieval. 
650 6 |a Entrepôts de données (Informatique) 
650 6 |a Données volumineuses. 
650 6 |a Recherche de l'information. 
650 7 |a information retrieval.  |2 aat 
650 7 |a Big data  |2 fast 
650 7 |a Data warehousing  |2 fast 
650 7 |a Electronic data processing  |2 fast 
650 7 |a Information retrieval  |2 fast 
700 1 |a Linstedt, Daniel,  |e author. 
700 1 |a Levins, Mary,  |e author. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9780128169179/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP