Cargando…

Beginning anomaly detection using Python-based deep learning : with Keras and PyTorch /

Chapter 5: Boltzmann Machines; What Is a Boltzmann Machine?; Restricted Boltzmann Machine (RBM); Anomaly Detection with the RBM - Credit Card Data Set; Anomaly Detection with the RBM - KDDCUP Data Set; Summary; Chapter 6: Long Short-Term Memory Models; Sequences and Time Series Analysis; What Is a R...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Alla, Sridhar (Autor), Adari, Suman Kalyan (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Apress, [2019]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1123175164
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 191015s2019 nyua ob 001 0 eng d
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d EBLCP  |d TEFOD  |d LQU  |d OCLCF  |d UKMGB  |d UMI  |d OCLCQ  |d N$T  |d UKAHL  |d SRU  |d OCLCQ  |d OCLCO  |d COM  |d OCLCQ 
015 |a GBB9H5761  |2 bnb 
016 7 |a 019578965  |2 Uk 
019 |a 1126000339  |a 1142817864 
020 |a 9781484251775  |q (electronic bk.) 
020 |a 1484251776  |q (electronic bk.) 
020 |z 9781484251768 
024 7 |a 10.1007/978-1-4842-5177-5  |2 doi 
024 8 |a 10.1007/978-1-4842-5 
029 1 |a AU@  |b 000066182785 
029 1 |a AU@  |b 000066277754 
029 1 |a AU@  |b 000066971757 
029 1 |a AU@  |b 000067110339 
029 1 |a AU@  |b 000069026533 
029 1 |a UKMGB  |b 019578965 
035 |a (OCoLC)1123175164  |z (OCoLC)1126000339  |z (OCoLC)1142817864 
037 |a 2CD5D0BD-3ABA-4D12-B7F0-63C761FAFA94  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.9.A25  |b A45 2019eb 
082 0 4 |a 005.8  |2 23 
049 |a UAMI 
100 1 |a Alla, Sridhar,  |e author. 
245 1 0 |a Beginning anomaly detection using Python-based deep learning :  |b with Keras and PyTorch /  |c Sridhar Alla, Suman Kalyan Adari. 
264 1 |a New York :  |b Apress,  |c [2019] 
264 4 |c ©2019 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed October 15, 2019). 
505 0 |a Intro; Table of Contents; About the Authors; About the Technical Reviewers; Acknowledgments; Introduction; Chapter 1: What Is Anomaly Detection?; What Is an Anomaly?; Anomalous Swans; Anomalies as Data Points; Anomalies in a Time Series; Taxi Cabs; Categories of Anomalies; Data Point-Based Anomalies; Context-Based Anomalies; Pattern-Based Anomalies; Anomaly Detection; Outlier Detection; Noise Removal; Novelty Detection; The Three Styles of Anomaly Detection; Where Is Anomaly Detection Used?; Data Breaches; Identity Theft; Manufacturing; Networking; Medicine; Video Surveillance; Summary 
505 8 |a Chapter 2: Traditional Methods of Anomaly DetectionData Science Review; Isolation Forest; Mutant Fish; Anomaly Detection with Isolation Forest; One-Class Support Vector Machine; Anomaly Detection with OC-SVM; Summary; Chapter 3: Introduction to Deep Learning; What Is Deep Learning?; Artificial Neural Networks; Intro to Keras: A Simple Classifier Model; Intro to PyTorch: A Simple Classifier Model; Summary; Chapter 4: Autoencoders; What Are Autoencoders?; Simple Autoencoders; Sparse Autoencoders; Deep Autoencoders; Convolutional Autoencoders; Denoising Autoencoders; Variational Autoencoders 
505 8 |a Chapter 7: Temporal Convolutional NetworksWhat Is a Temporal Convolutional Network?; Dilated Temporal Convolutional Network; Anomaly Detection with the Dilated TCN; Encoder-Decoder Temporal Convolutional Network; Anomaly Detection with the ED-TCN; Summary; Chapter 8: Practical Use Cases of Anomaly Detection; Anomaly Detection; Real-World Use Cases of Anomaly Detection; Telecom; Banking; Environmental; Healthcare; Transportation; Social Media; Finance and Insurance; Cybersecurity; Video Surveillance; Manufacturing; Smart Home; Retail; Implementation of Deep Learning-Based Anomaly Detection 
520 |a Chapter 5: Boltzmann Machines; What Is a Boltzmann Machine?; Restricted Boltzmann Machine (RBM); Anomaly Detection with the RBM - Credit Card Data Set; Anomaly Detection with the RBM - KDDCUP Data Set; Summary; Chapter 6: Long Short-Term Memory Models; Sequences and Time Series Analysis; What Is a RNN?; What Is an LSTM?; LSTM for Anomaly Detection; Examples of Time Series; art_daily_no_noise; art_daily_nojump; art_daily_jumpsdown; art_daily_perfect_square_wave; art_load_balancer_spikes; ambient_temperature_system_failure; ec2_cpu_utilization; rds_cpu_utilization; Summary 
520 |a Appendix A: Intro to Keras; What Is Keras?; Using Keras; Model Creation; Model Compilation and Training; Model Evaluation and Prediction; Layers; Input Layer; Dense Layer; Activation; Dropout; Flatten; Spatial Dropout 1D; Spatial Dropout 2D; Conv1D; Conv2D; UpSampling 1D; UpSampling 2D; ZeroPadding1D; ZeroPadding2D; MaxPooling1D; MaxPooling2D; Loss Functions; Mean Squared Error; Categorical Cross Entropy; Sparse Categorical Cross Entropy; Metrics; Binary Accuracy; Categorical Accuracy; Optimizers; SGD; Adam; RMSprop; Activations; Softmax; ReLU; Sigmoid; Callbacks; ModelCheckpoint 
504 |a Includes bibliographical references and index. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Anomaly detection (Computer security) 
650 0 |a Python (Computer program language) 
650 6 |a Détection d'anomalies (Sécurité informatique) 
650 6 |a Python (Langage de programmation) 
650 7 |a Anomaly detection (Computer security)  |2 fast  |0 (OCoLC)fst01739215 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
700 1 |a Adari, Suman Kalyan,  |e author. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484251775/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36903523 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5940469 
938 |a EBSCOhost  |b EBSC  |n 2271426 
994 |a 92  |b IZTAP