|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
OR_on1123175164 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
191015s2019 nyua ob 001 0 eng d |
040 |
|
|
|a GW5XE
|b eng
|e rda
|e pn
|c GW5XE
|d EBLCP
|d TEFOD
|d LQU
|d OCLCF
|d UKMGB
|d UMI
|d OCLCQ
|d N$T
|d UKAHL
|d SRU
|d OCLCQ
|d OCLCO
|d COM
|d OCLCQ
|
015 |
|
|
|a GBB9H5761
|2 bnb
|
016 |
7 |
|
|a 019578965
|2 Uk
|
019 |
|
|
|a 1126000339
|a 1142817864
|
020 |
|
|
|a 9781484251775
|q (electronic bk.)
|
020 |
|
|
|a 1484251776
|q (electronic bk.)
|
020 |
|
|
|z 9781484251768
|
024 |
7 |
|
|a 10.1007/978-1-4842-5177-5
|2 doi
|
024 |
8 |
|
|a 10.1007/978-1-4842-5
|
029 |
1 |
|
|a AU@
|b 000066182785
|
029 |
1 |
|
|a AU@
|b 000066277754
|
029 |
1 |
|
|a AU@
|b 000066971757
|
029 |
1 |
|
|a AU@
|b 000067110339
|
029 |
1 |
|
|a AU@
|b 000069026533
|
029 |
1 |
|
|a UKMGB
|b 019578965
|
035 |
|
|
|a (OCoLC)1123175164
|z (OCoLC)1126000339
|z (OCoLC)1142817864
|
037 |
|
|
|a 2CD5D0BD-3ABA-4D12-B7F0-63C761FAFA94
|b OverDrive, Inc.
|n http://www.overdrive.com
|
050 |
|
4 |
|a QA76.9.A25
|b A45 2019eb
|
082 |
0 |
4 |
|a 005.8
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Alla, Sridhar,
|e author.
|
245 |
1 |
0 |
|a Beginning anomaly detection using Python-based deep learning :
|b with Keras and PyTorch /
|c Sridhar Alla, Suman Kalyan Adari.
|
264 |
|
1 |
|a New York :
|b Apress,
|c [2019]
|
264 |
|
4 |
|c ©2019
|
300 |
|
|
|a 1 online resource :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Online resource; title from PDF title page (SpringerLink, viewed October 15, 2019).
|
505 |
0 |
|
|a Intro; Table of Contents; About the Authors; About the Technical Reviewers; Acknowledgments; Introduction; Chapter 1: What Is Anomaly Detection?; What Is an Anomaly?; Anomalous Swans; Anomalies as Data Points; Anomalies in a Time Series; Taxi Cabs; Categories of Anomalies; Data Point-Based Anomalies; Context-Based Anomalies; Pattern-Based Anomalies; Anomaly Detection; Outlier Detection; Noise Removal; Novelty Detection; The Three Styles of Anomaly Detection; Where Is Anomaly Detection Used?; Data Breaches; Identity Theft; Manufacturing; Networking; Medicine; Video Surveillance; Summary
|
505 |
8 |
|
|a Chapter 2: Traditional Methods of Anomaly DetectionData Science Review; Isolation Forest; Mutant Fish; Anomaly Detection with Isolation Forest; One-Class Support Vector Machine; Anomaly Detection with OC-SVM; Summary; Chapter 3: Introduction to Deep Learning; What Is Deep Learning?; Artificial Neural Networks; Intro to Keras: A Simple Classifier Model; Intro to PyTorch: A Simple Classifier Model; Summary; Chapter 4: Autoencoders; What Are Autoencoders?; Simple Autoencoders; Sparse Autoencoders; Deep Autoencoders; Convolutional Autoencoders; Denoising Autoencoders; Variational Autoencoders
|
505 |
8 |
|
|a Chapter 7: Temporal Convolutional NetworksWhat Is a Temporal Convolutional Network?; Dilated Temporal Convolutional Network; Anomaly Detection with the Dilated TCN; Encoder-Decoder Temporal Convolutional Network; Anomaly Detection with the ED-TCN; Summary; Chapter 8: Practical Use Cases of Anomaly Detection; Anomaly Detection; Real-World Use Cases of Anomaly Detection; Telecom; Banking; Environmental; Healthcare; Transportation; Social Media; Finance and Insurance; Cybersecurity; Video Surveillance; Manufacturing; Smart Home; Retail; Implementation of Deep Learning-Based Anomaly Detection
|
520 |
|
|
|a Chapter 5: Boltzmann Machines; What Is a Boltzmann Machine?; Restricted Boltzmann Machine (RBM); Anomaly Detection with the RBM - Credit Card Data Set; Anomaly Detection with the RBM - KDDCUP Data Set; Summary; Chapter 6: Long Short-Term Memory Models; Sequences and Time Series Analysis; What Is a RNN?; What Is an LSTM?; LSTM for Anomaly Detection; Examples of Time Series; art_daily_no_noise; art_daily_nojump; art_daily_jumpsdown; art_daily_perfect_square_wave; art_load_balancer_spikes; ambient_temperature_system_failure; ec2_cpu_utilization; rds_cpu_utilization; Summary
|
520 |
|
|
|a Appendix A: Intro to Keras; What Is Keras?; Using Keras; Model Creation; Model Compilation and Training; Model Evaluation and Prediction; Layers; Input Layer; Dense Layer; Activation; Dropout; Flatten; Spatial Dropout 1D; Spatial Dropout 2D; Conv1D; Conv2D; UpSampling 1D; UpSampling 2D; ZeroPadding1D; ZeroPadding2D; MaxPooling1D; MaxPooling2D; Loss Functions; Mean Squared Error; Categorical Cross Entropy; Sparse Categorical Cross Entropy; Metrics; Binary Accuracy; Categorical Accuracy; Optimizers; SGD; Adam; RMSprop; Activations; Softmax; ReLU; Sigmoid; Callbacks; ModelCheckpoint
|
504 |
|
|
|a Includes bibliographical references and index.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Anomaly detection (Computer security)
|
650 |
|
0 |
|a Python (Computer program language)
|
650 |
|
6 |
|a Détection d'anomalies (Sécurité informatique)
|
650 |
|
6 |
|a Python (Langage de programmation)
|
650 |
|
7 |
|a Anomaly detection (Computer security)
|2 fast
|0 (OCoLC)fst01739215
|
650 |
|
7 |
|a Python (Computer program language)
|2 fast
|0 (OCoLC)fst01084736
|
700 |
1 |
|
|a Adari, Suman Kalyan,
|e author.
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781484251775/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH36903523
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5940469
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 2271426
|
994 |
|
|
|a 92
|b IZTAP
|