Beginning anomaly detection using Python-based deep learning : with Keras and PyTorch /
Chapter 5: Boltzmann Machines; What Is a Boltzmann Machine?; Restricted Boltzmann Machine (RBM); Anomaly Detection with the RBM - Credit Card Data Set; Anomaly Detection with the RBM - KDDCUP Data Set; Summary; Chapter 6: Long Short-Term Memory Models; Sequences and Time Series Analysis; What Is a R...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York :
Apress,
[2019]
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Sumario: | Chapter 5: Boltzmann Machines; What Is a Boltzmann Machine?; Restricted Boltzmann Machine (RBM); Anomaly Detection with the RBM - Credit Card Data Set; Anomaly Detection with the RBM - KDDCUP Data Set; Summary; Chapter 6: Long Short-Term Memory Models; Sequences and Time Series Analysis; What Is a RNN?; What Is an LSTM?; LSTM for Anomaly Detection; Examples of Time Series; art_daily_no_noise; art_daily_nojump; art_daily_jumpsdown; art_daily_perfect_square_wave; art_load_balancer_spikes; ambient_temperature_system_failure; ec2_cpu_utilization; rds_cpu_utilization; Summary Appendix A: Intro to Keras; What Is Keras?; Using Keras; Model Creation; Model Compilation and Training; Model Evaluation and Prediction; Layers; Input Layer; Dense Layer; Activation; Dropout; Flatten; Spatial Dropout 1D; Spatial Dropout 2D; Conv1D; Conv2D; UpSampling 1D; UpSampling 2D; ZeroPadding1D; ZeroPadding2D; MaxPooling1D; MaxPooling2D; Loss Functions; Mean Squared Error; Categorical Cross Entropy; Sparse Categorical Cross Entropy; Metrics; Binary Accuracy; Categorical Accuracy; Optimizers; SGD; Adam; RMSprop; Activations; Softmax; ReLU; Sigmoid; Callbacks; ModelCheckpoint |
---|---|
Descripción Física: | 1 online resource : illustrations |
Bibliografía: | Includes bibliographical references and index. |
ISBN: | 9781484251775 1484251776 |