Cargando…

Practical time series analysis : prediction with statistics and machine learning /

Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Nielson, Aileen (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly Media, [2019]
Edición:First edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1122564669
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 191007t20192020caua ob 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d UKAHL  |d SXT  |d OCLCO  |d OCLCQ  |d KSU  |d OCLCQ  |d OCLCO 
019 |a 1289845585 
020 |a 9781492041603  |q (e-book) 
020 |a 1492041602 
020 |z 9781492041658 
029 1 |a AU@  |b 000071520565 
035 |a (OCoLC)1122564669  |z (OCoLC)1289845585 
037 |a CL0501000074  |b Safari Books Online 
050 4 |a Q325.5 
082 0 4 |a 006.31  |q OCoLC  |2 23/eng/20230216 
049 |a UAMI 
100 1 |a Nielson, Aileen,  |e author. 
245 1 0 |a Practical time series analysis :  |b prediction with statistics and machine learning /  |c Aileen Nielson. 
250 |a First edition. 
264 1 |a Sebastopol, CA :  |b O'Reilly Media,  |c [2019] 
264 4 |c ©2020 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (Safari, viewed September 30, 2019). 
504 |a Includes bibliographical references and index. 
520 |a Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase. Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challengesin time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Time-series analysis  |x Data processing. 
650 0 |a Python (Computer program language) 
650 0 |a R (Computer program language) 
650 6 |a Apprentissage automatique. 
650 6 |a Série chronologique  |x Informatique. 
650 6 |a Python (Langage de programmation) 
650 6 |a R (Langage de programmation) 
650 7 |a Machine learning  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
650 7 |a R (Computer program language)  |2 fast 
650 7 |a Time-series analysis  |x Data processing  |2 fast 
776 0 8 |i Print version:  |a Nielson, Aileen.  |t Practical time series analysis.  |b First edition.  |d Sebastopol, CA : O'Reilly Media, [2019]  |w (DLC) 2020301333 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781492041641/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36887134 
994 |a 92  |b IZTAP