Cargando…

Advanced applied deep learning : convolutional neural networks and object detection /

Develop and optimize deep learning models with advanced architectures. This book teaches you the intricate details and subtleties of the algorithms that are at the core of convolutional neural networks. In Advanced Applied Deep Learning, you will study advanced topics on CNN and object detection usi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Michelucci, Umberto (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Apress, [2019]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1121582523
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 191003s2019 nyua ob 001 0 eng d
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d EBLCP  |d LQU  |d UKMGB  |d OCLCQ  |d OCLCF  |d N$T  |d OCLCQ  |d N$T  |d SFB  |d UMI  |d VT2  |d OCLCQ  |d UKAHL  |d K6U  |d OCLCQ  |d OCLCO  |d COM  |d OCLCQ  |d OCLCO 
015 |a GBB9G9627  |2 bnb 
016 7 |a 019564761  |2 Uk 
019 |a 1121274059  |a 1125868185  |a 1127651156  |a 1136251030  |a 1138957270 
020 |a 9781484249765  |q (electronic bk.) 
020 |a 1484249763  |q (electronic bk.) 
020 |a 1484249755 
020 |a 9781484249758 
020 |a 9781484249772  |q (print) 
020 |a 1484249771 
020 |z 9781484249758 
024 7 |a 10.1007/978-1-4842-4976-5  |2 doi 
024 8 |a 10.1007/978-1-4842-4 
029 1 |a AU@  |b 000066138819 
029 1 |a AU@  |b 000066186590 
029 1 |a AU@  |b 000066193185 
029 1 |a UKMGB  |b 019564761 
035 |a (OCoLC)1121582523  |z (OCoLC)1121274059  |z (OCoLC)1125868185  |z (OCoLC)1127651156  |z (OCoLC)1136251030  |z (OCoLC)1138957270 
037 |a com.springer.onix.9781484249765  |b Springer Nature 
050 4 |a Q325.5  |b .M53 2019eb 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3/1  |2 23 
049 |a UAMI 
100 1 |a Michelucci, Umberto,  |e author. 
245 1 0 |a Advanced applied deep learning :  |b convolutional neural networks and object detection /  |c Umberto Michelucci. 
264 1 |a New York :  |b Apress,  |c [2019] 
264 4 |c ©2019 
300 |a 1 online resource :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed October 3, 2019). 
505 0 |a Intro; Table of Contents; About the Author; About the Technical Reviewer; Acknowledgments; Introduction; Chapter 1: Introduction and Development Environment Setup; GitHub Repository and Companion Website; Mathematical Level Required; Python Development Environment; Google Colab; Benefits and Drawbacks to Google Colab; Anaconda; Installing TensorFlow the Anaconda Way; Local Jupyter Notebooks; Benefits and Drawbacks to Anaconda; Docker Image; Benefits and Drawbacks to a Docker Image; Which Option Should You Choose?; Chapter 2: TensorFlow: Advanced Topics; Tensorflow Eager Execution 
505 8 |a Enabling Eager ExecutionPolynomial Fitting with Eager Execution; MNIST Classification with Eager Execution; TensorFlow and Numpy Compatibility; Hardware Acceleration; Checking the Availability of the GPU; Device Names; Explicit Device Placement; GPU Acceleration Demonstration: Matrix Multiplication; Effect of GPU Acceleration on the MNIST Example; Training Only Specific Layers; Training Only Specific Layers: An Example; Removing Layers; Keras Callback Functions; Custom Callback Class; Example of a Custom Callback Class; Save and Load Models; Save Your Weights Manually; Saving the Entire Model 
505 8 |a Dataset AbstractionIterating Over a Dataset; Simple Batching; Simple Batching with the MNIST Dataset; Using tf.data. Dataset in Eager Execution Mode; Conclusions; Chapter 3: Fundamentals of Convolutional Neural Networks; Kernels and Filters; Convolution; Examples of Convolution; Pooling; Padding; Building Blocks of a CNN; Convolutional Layers; Pooling Layers; Stacking Layers Together; Number of Weights in a CNN; Convolutional Layer; Pooling Layer; Dense Layer; Example of a CNN: MNIST Dataset; Visualization of CNN Learning; Brief Digression: keras.backend.function(); Effect of Kernels 
505 8 |a Effect of Max-PoolingChapter 4: Advanced CNNs and Transfer Learning; Convolution with Multiple Channels; History and Basics of Inception Networks; Inception Module: Naïve Version; Number of Parameters in the Naïve Inception Module; Inception Module with Dimension Reduction; Multiple Cost Functions: GoogLeNet; Example of Inception Modules in Keras; Digression: Custom Losses in Keras; How To Use Pre-Trained Networks; Transfer Learning: An Introduction; A Dog and Cat Problem; Classical Approach to Transfer Learning; Experimentation with Transfer Learning 
505 8 |a Chapter 5: Cost Functions and Style TransferComponents of a Neural Network Model; Training Seen as an Optimization Problem; A Concrete Example: Linear Regression; The Cost Function; Mathematical Notation; Typical Cost Functions; Mean Square Error; Intuitive Explanation; MSE as the Second Moment of a Moment-Generating Function; Cross-Entropy; Self-Information or Suprisal of an Event; Suprisal Associated with an Event X; Cross-Entropy; Cross-Entropy for Binary Classification; Cost Functions: A Final Word; Neural Style Transfer; The Mathematics Behind NST; An Example of Style Transfer in Keras 
520 |a Develop and optimize deep learning models with advanced architectures. This book teaches you the intricate details and subtleties of the algorithms that are at the core of convolutional neural networks. In Advanced Applied Deep Learning, you will study advanced topics on CNN and object detection using Keras and TensorFlow. Along the way, you will look at the fundamental operations in CNN, such as convolution and pooling, and then look at more advanced architectures such as inception networks, resnets, and many more. While the book discusses theoretical topics, you will discover how to work efficiently with Keras with many tricks and tips, including how to customize logging in Keras with custom callback classes, what is eager execution, and how to use it in your models. Finally, you will study how object detection works, and build a complete implementation of the YOLO (you only look once) algorithm in Keras and TensorFlow. By the end of the book you will have implemented various models in Keras and learned many advanced tricks that will bring your skills to the next level. You will: See how convolutional neural networks and object detection work Save weights and models on disk Pause training and restart it at a later stage Use hardware acceleration (GPUs) in your code Work with the Dataset TensorFlow abstraction and use pre-trained models and transfer learning Remove and add layers to pre-trained networks to adapt them to your specific project Apply pre-trained models such as Alexnet and VGG16 to new datasets. 
504 |a Includes bibliographical references and index. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Neural networks (Computer science) 
650 0 |a Python (Computer program language) 
650 2 |a Neural Networks, Computer 
650 2 |a Machine Learning 
650 6 |a Apprentissage automatique. 
650 6 |a Réseaux neuronaux (Informatique) 
650 6 |a Python (Langage de programmation) 
650 7 |a Machine learning  |2 fast 
650 7 |a Neural networks (Computer science)  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
776 0 |z 1484249755 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484249765/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36855092 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5909956 
938 |a EBSCOhost  |b EBSC  |n 2259772 
994 |a 92  |b IZTAP