|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
OR_on1121200581 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr unu|||||||| |
008 |
190930s2019 caua ob 001 0 eng d |
040 |
|
|
|a UMI
|b eng
|e rda
|e pn
|c UMI
|d TEFOD
|d EBLCP
|d YDX
|d OCLCQ
|d OCLCF
|d OCLCQ
|d UKAHL
|d OCLCQ
|d OCLCO
|d NZAUC
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 1120692057
|a 1120788849
|a 1289840567
|
020 |
|
|
|a 9781492046417
|q (electronic bk.)
|
020 |
|
|
|a 1492046418
|q (electronic bk.)
|
020 |
|
|
|a 9781492046455
|
020 |
|
|
|a 1492046450
|
020 |
|
|
|z 9781492046448
|
020 |
|
|
|z 1492046442
|
029 |
1 |
|
|a AU@
|b 000071520782
|
035 |
|
|
|a (OCoLC)1121200581
|z (OCoLC)1120692057
|z (OCoLC)1120788849
|z (OCoLC)1289840567
|
037 |
|
|
|a CL0501000073
|b Safari Books Online
|
050 |
|
4 |
|a QA76.76.I57
|
082 |
0 |
4 |
|a 005.5
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Foss, Greg,
|e author.
|
245 |
1 |
0 |
|a Practical data science with SAP :
|b machine learning techniques for enterprise data /
|c Greg Foss and Paul Modderman.
|
250 |
|
|
|a First edition.
|
264 |
|
1 |
|a Sebastopol, CA :
|b O'Reilly Media,
|c [2019]
|
264 |
|
4 |
|c ©2019
|
300 |
|
|
|a 1 online resource (1 volume) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Online resource; title from title page (Safari, viewed September 24, 2019).
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Intro; Copyright; Table of Contents; Preface; How to Read This Book; Conventions Used in This Book; Using Code Examples; O'Reilly Online Learning; How to Contact Us; Acknowledgments; Chapter 1. Introduction; Telling Better Stories with Data; A Quick Look: Data Science for SAP Professionals; A Quick Look: SAP Basics for Data Scientists; Getting Data Out of SAP; Roles and Responsibilities; Summary; Chapter 2. Data Science for SAP Professionals; Machine Learning; Supervised Machine Learning; Unsupervised Machine Learning; Semi-Supervised Machine Learning; Reinforcement Machine Learning
|
505 |
8 |
|
|a Neural NetworksSummary; Chapter 3. SAP for Data Scientists; Getting Started with SAP; The ABAP Data Dictionary; Tables; Structures; Data Elements and Domains; Where-Used; ABAP QuickViewer; SE16 Export; OData Services; Core Data Services; Summary; Chapter 4. Exploratory Data Analysis with R; The Four Phases of EDA; Phase 1: Collecting Our Data; Importing with R; Phase 2: Cleaning Our Data; Null Removal; Binary Indicators; Removing Extraneous Columns; Whitespace; Numbers; Phase 3: Analyzing Our Data; DataExplorer; Discrete Features; Continuous Features; Phase 4: Modeling Our Data
|
505 |
8 |
|
|a TensorFlow and KerasTraining and Testing Split; Shaping and One-Hot Encoding; Recipes; Preparing Data for the Neural Network; Results; Summary; Chapter 5. Anomaly Detection with R and Python; Types of Anomalies; Tools in R; AnomalyDetection; Anomalize; Getting the Data; SAP ECC System; SAP NetWeaver Gateway; SQL Server; Finding Anomalies; PowerBI and R; PowerBI and Python; Summary; Chapter 6. Predictive Analytics in R and Python; Predicting Sales in R; Step 1: Identify Data; Step 2: Gather Data; Step 3: Explore Data; Step 4: Model Data; Step 5: Evaluate Model; Predicting Sales in Python
|
505 |
8 |
|
|a Step 1: Identify DataStep 2: Gather Data; Step 3: Explore Data; Step 4: Model Data; Step 5: Evaluate Model; Summary; Chapter 7. Clustering and Segmentation in R; Understanding Clustering and Segmentation; RFM; Pareto Principle; k-Means; k-Medoid; Hierarchical Clustering; Time-Series Clustering; Step 1: Collecting the Data; Step 2: Cleaning the Data; Step 3: Analyzing the Data; Revisiting the Pareto Principle; Finding Optimal Clusters; k-Means Clustering; k-Medoid Clustering; Hierarchical Clustering; Manual RFM; Step 4: Report the Findings; R Markdown Code; R Markdown Knit; Summary
|
505 |
8 |
|
|a Chapter 8. Association Rule MiningUnderstanding Association Rule Mining; Support; Confidence; Lift; Apriori Algorithm; Operationalization Overview; Collecting the Data; Cleaning the Data; Analyzing the Data; Fiori; Summary; Chapter 9. Natural Language Processing with the Google Cloud Natural Language API; Understanding Natural Language Processing; Sentiment Analysis; Translation; Preparing the Cloud API; Collecting the Data; Analyzing the Data; Summary; Chapter 10. Conclusion; Original Mission; Recap; Chapter 1: Introduction; Chapter 2: Data Science for SAP Professionals
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
630 |
0 |
0 |
|a SAP ERP.
|
630 |
0 |
7 |
|a SAP ERP
|2 fast
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
0 |
|a Business enterprises
|x Data processing.
|
650 |
|
6 |
|a Apprentissage automatique.
|
650 |
|
6 |
|a Entreprises
|x Informatique.
|
650 |
|
7 |
|a Business enterprises
|x Data processing
|2 fast
|
650 |
|
7 |
|a Machine learning
|2 fast
|
700 |
1 |
|
|a Modderman, Paul,
|e author.
|
776 |
0 |
8 |
|i Print version:
|a Foss, Greg.
|t Practical Data Science with SAP : Machine Learning Techniques for Enterprise Data.
|d Sebastopol : O'Reilly Media, Incorporated, ©2019
|z 9781492046448
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781492046431/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH36714432
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5899206
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 16453707
|
994 |
|
|
|a 92
|b IZTAP
|