Cargando…

Practical data science with SAP : machine learning techniques for enterprise data /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Foss, Greg (Autor), Modderman, Paul (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly Media, [2019]
Edición:First edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1121200581
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 190930s2019 caua ob 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d TEFOD  |d EBLCP  |d YDX  |d OCLCQ  |d OCLCF  |d OCLCQ  |d UKAHL  |d OCLCQ  |d OCLCO  |d NZAUC  |d OCLCQ  |d OCLCO 
019 |a 1120692057  |a 1120788849  |a 1289840567 
020 |a 9781492046417  |q (electronic bk.) 
020 |a 1492046418  |q (electronic bk.) 
020 |a 9781492046455 
020 |a 1492046450 
020 |z 9781492046448 
020 |z 1492046442 
029 1 |a AU@  |b 000071520782 
035 |a (OCoLC)1121200581  |z (OCoLC)1120692057  |z (OCoLC)1120788849  |z (OCoLC)1289840567 
037 |a CL0501000073  |b Safari Books Online 
050 4 |a QA76.76.I57 
082 0 4 |a 005.5  |2 23 
049 |a UAMI 
100 1 |a Foss, Greg,  |e author. 
245 1 0 |a Practical data science with SAP :  |b machine learning techniques for enterprise data /  |c Greg Foss and Paul Modderman. 
250 |a First edition. 
264 1 |a Sebastopol, CA :  |b O'Reilly Media,  |c [2019] 
264 4 |c ©2019 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (Safari, viewed September 24, 2019). 
504 |a Includes bibliographical references and index. 
505 0 |a Intro; Copyright; Table of Contents; Preface; How to Read This Book; Conventions Used in This Book; Using Code Examples; O'Reilly Online Learning; How to Contact Us; Acknowledgments; Chapter 1. Introduction; Telling Better Stories with Data; A Quick Look: Data Science for SAP Professionals; A Quick Look: SAP Basics for Data Scientists; Getting Data Out of SAP; Roles and Responsibilities; Summary; Chapter 2. Data Science for SAP Professionals; Machine Learning; Supervised Machine Learning; Unsupervised Machine Learning; Semi-Supervised Machine Learning; Reinforcement Machine Learning 
505 8 |a Neural NetworksSummary; Chapter 3. SAP for Data Scientists; Getting Started with SAP; The ABAP Data Dictionary; Tables; Structures; Data Elements and Domains; Where-Used; ABAP QuickViewer; SE16 Export; OData Services; Core Data Services; Summary; Chapter 4. Exploratory Data Analysis with R; The Four Phases of EDA; Phase 1: Collecting Our Data; Importing with R; Phase 2: Cleaning Our Data; Null Removal; Binary Indicators; Removing Extraneous Columns; Whitespace; Numbers; Phase 3: Analyzing Our Data; DataExplorer; Discrete Features; Continuous Features; Phase 4: Modeling Our Data 
505 8 |a TensorFlow and KerasTraining and Testing Split; Shaping and One-Hot Encoding; Recipes; Preparing Data for the Neural Network; Results; Summary; Chapter 5. Anomaly Detection with R and Python; Types of Anomalies; Tools in R; AnomalyDetection; Anomalize; Getting the Data; SAP ECC System; SAP NetWeaver Gateway; SQL Server; Finding Anomalies; PowerBI and R; PowerBI and Python; Summary; Chapter 6. Predictive Analytics in R and Python; Predicting Sales in R; Step 1: Identify Data; Step 2: Gather Data; Step 3: Explore Data; Step 4: Model Data; Step 5: Evaluate Model; Predicting Sales in Python 
505 8 |a Step 1: Identify DataStep 2: Gather Data; Step 3: Explore Data; Step 4: Model Data; Step 5: Evaluate Model; Summary; Chapter 7. Clustering and Segmentation in R; Understanding Clustering and Segmentation; RFM; Pareto Principle; k-Means; k-Medoid; Hierarchical Clustering; Time-Series Clustering; Step 1: Collecting the Data; Step 2: Cleaning the Data; Step 3: Analyzing the Data; Revisiting the Pareto Principle; Finding Optimal Clusters; k-Means Clustering; k-Medoid Clustering; Hierarchical Clustering; Manual RFM; Step 4: Report the Findings; R Markdown Code; R Markdown Knit; Summary 
505 8 |a Chapter 8. Association Rule MiningUnderstanding Association Rule Mining; Support; Confidence; Lift; Apriori Algorithm; Operationalization Overview; Collecting the Data; Cleaning the Data; Analyzing the Data; Fiori; Summary; Chapter 9. Natural Language Processing with the Google Cloud Natural Language API; Understanding Natural Language Processing; Sentiment Analysis; Translation; Preparing the Cloud API; Collecting the Data; Analyzing the Data; Summary; Chapter 10. Conclusion; Original Mission; Recap; Chapter 1: Introduction; Chapter 2: Data Science for SAP Professionals 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a SAP ERP. 
630 0 7 |a SAP ERP  |2 fast 
650 0 |a Machine learning. 
650 0 |a Business enterprises  |x Data processing. 
650 6 |a Apprentissage automatique. 
650 6 |a Entreprises  |x Informatique. 
650 7 |a Business enterprises  |x Data processing  |2 fast 
650 7 |a Machine learning  |2 fast 
700 1 |a Modderman, Paul,  |e author. 
776 0 8 |i Print version:  |a Foss, Greg.  |t Practical Data Science with SAP : Machine Learning Techniques for Enterprise Data.  |d Sebastopol : O'Reilly Media, Incorporated, ©2019  |z 9781492046448 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781492046431/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36714432 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5899206 
938 |a YBP Library Services  |b YANK  |n 16453707 
994 |a 92  |b IZTAP