|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
OR_on1120720276 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
190923s2019 nyua ob 001 0 eng d |
040 |
|
|
|a GW5XE
|b eng
|e rda
|e pn
|c GW5XE
|d EBLCP
|d LQU
|d UKMGB
|d N$T
|d OCLCF
|d UMI
|d OCLCQ
|d SFB
|d OCLCQ
|d TOH
|d VT2
|d COO
|d OCLCQ
|d UKAHL
|d BRF
|d OCLCQ
|d OCLCO
|d COM
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBB9G3391
|2 bnb
|
016 |
7 |
|
|a 019542197
|2 Uk
|
019 |
|
|
|a 1119629944
|a 1121276026
|a 1122564785
|a 1125807606
|a 1129200815
|a 1129201383
|a 1129351919
|a 1136401606
|a 1138954303
|a 1153896317
|
020 |
|
|
|a 9781484250013
|q (electronic bk.)
|
020 |
|
|
|a 148425001X
|q (electronic bk.)
|
020 |
|
|
|a 1484250001
|
020 |
|
|
|a 9781484250006
|
020 |
|
|
|a 9781484250020
|q (print)
|
020 |
|
|
|a 1484250028
|
020 |
|
|
|z 9781484250006
|
024 |
7 |
|
|a 10.1007/978-1-4842-5001-3
|2 doi
|
024 |
8 |
|
|a 10.1007/978-1-4842-5
|
029 |
1 |
|
|a AU@
|b 000066120799
|
029 |
1 |
|
|a AU@
|b 000066123887
|
029 |
1 |
|
|a AU@
|b 000066129975
|
029 |
1 |
|
|a AU@
|b 000067094445
|
029 |
1 |
|
|a UKMGB
|b 019542197
|
035 |
|
|
|a (OCoLC)1120720276
|z (OCoLC)1119629944
|z (OCoLC)1121276026
|z (OCoLC)1122564785
|z (OCoLC)1125807606
|z (OCoLC)1129200815
|z (OCoLC)1129201383
|z (OCoLC)1129351919
|z (OCoLC)1136401606
|z (OCoLC)1138954303
|z (OCoLC)1153896317
|
037 |
|
|
|a com.springer.onix.9781484250013
|b Springer Nature
|
050 |
|
4 |
|a QA76.73.S27
|b B48 2019eb
|
072 |
|
7 |
|a UMX
|2 bicssc
|
072 |
|
7 |
|a COM051360
|2 bisacsh
|
072 |
|
7 |
|a UMX
|2 thema
|
082 |
0 |
4 |
|a 005.13/3
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Betancourt, Randy,
|e author.
|
245 |
1 |
0 |
|a Python for SAS users :
|b a SAS-oriented introduction to Python /
|c Randy Betancourt, Sarah Chen.
|
264 |
|
1 |
|a New York :
|b Apress,
|c [2019]
|
264 |
|
4 |
|c ©2019
|
300 |
|
|
|a 1 online resource :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|
347 |
|
|
|b PDF
|
588 |
0 |
|
|a Online resource; title from PDF title page (SpringerLink, viewed September 23, 2019).
|
505 |
0 |
|
|a Chapter 1: Why Python -- Chapter 2: Python Types and Formatting -- Chapter 3: pandas Library -- Chapter 4: Indexing and GroupBy -- Chapter 5: Data Management -- Chapter 6: pandas Readers and Writers -- Chapter 7: Date and Time -- Chapter 8: saspy Module -- Appendix A: Generating the Tickets DataFrame -- Appendix B: Many-to-Many Use Case
|
520 |
|
|
|a Business users familiar with Base SAS programming can now learn Python by example. You will learn via examples that map SAS programming constructs and coding patterns into their Python equivalents. Your primary focus will be on pandas and data management issues related to analysis of data. It is estimated that there are three million or more SAS users worldwide today. As the data science landscape shifts from using SAS to open source software such as Python, many users will feel the need to update their skills. Most users are not formally trained in computer science and have likely acquired their skills programming SAS as part of their job. As a result, the current documentation and plethora of books and websites for learning Python are technical and not geared for most SAS users. Python for SAS Users provides the most comprehensive set of examples currently available. It contains over 200 Python scripts and approximately 75 SAS programs that are analogs to the Python scripts. The first chapters are more Python-centric, while the remaining chapters illustrate SAS and corresponding Python examples to solve common data analysis tasks such as reading multiple input sources, missing value detection, imputation, merging/combining data, and producing output. This book is an indispensable guide for integrating SAS and Python workflows. What Youll Learn: Quickly master Python for data analysis without using a trial-and-error approach Understand the similarities and differences between Base SAS and Python Better determine which language to use, depending on your needs Obtain quick results.
|
504 |
|
|
|a Includes bibliographical references and index.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
630 |
0 |
0 |
|a SAS (Computer file)
|
630 |
0 |
7 |
|a SAS (Computer file)
|2 fast
|
650 |
|
0 |
|a Python (Computer program language)
|
650 |
|
6 |
|a Python (Langage de programmation)
|
650 |
|
7 |
|a Python (Computer program language)
|2 fast
|
700 |
1 |
|
|a Chen, Sarah,
|e author.
|
776 |
0 |
8 |
|i Print version:
|a Betancourt, Randy.
|t Python for SAS Users : A SAS-Oriented Introduction to Python.
|d Berkeley, CA : Apress L.P., ©2019
|z 9781484250006
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781484250013/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH36710616
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5892690
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 2246237
|
994 |
|
|
|a 92
|b IZTAP
|