Cargando…

Learning Spark, 2nd Edition /

Data is getting bigger, arriving faster, and coming in varied formats-and it all needs to be processed at scale for analytics or machine learning. How can you process such varied data workloads efficiently? Enter Apache Spark. Updated to emphasize new features in Spark 2.x., this second edition show...

Descripción completa

Detalles Bibliográficos
Autores principales: Damji, Jules (Autor), Lee, Denny (Autor), Wenig, Brooke (Autor), Das, Tathagata (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico eBook
Idioma:Inglés
Publicado: O'Reilly Media, Inc., 2020.
Edición:2nd edition.
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ma 4500
001 OR_on1119132190
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 190911s2020 xx o 000 0 eng d
040 |a OTZ  |b eng  |c OTZ  |d OCLCQ 
020 |z 9781492050049 
024 8 |a 9781492050032 
029 1 |a AU@  |b 000066232436 
035 |a (OCoLC)1119132190 
049 |a UAMI 
100 1 |a Damji, Jules,  |e author. 
245 1 0 |a Learning Spark, 2nd Edition /  |c Damji, Jules. 
250 |a 2nd edition. 
264 1 |b O'Reilly Media, Inc.,  |c 2020. 
300 |a 1 online resource (300 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
365 |b 44.99 
520 |a Data is getting bigger, arriving faster, and coming in varied formats-and it all needs to be processed at scale for analytics or machine learning. How can you process such varied data workloads efficiently? Enter Apache Spark. Updated to emphasize new features in Spark 2.x., this second edition shows data engineers and scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine-learning algorithms. Through discourse, code snippets, and notebooks, you'll be able to: Learn Python, SQL, Scala, or Java high-level APIs: DataFrames and Datasets Peek under the hood of the Spark SQL engine to understand Spark transformations and performance Inspect, tune, and debug your Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow Use open source Pandas framework Koalas and Spark for data transformation and feature engineering. 
542 |f Copyright © O'Reilly Media, Inc. 
550 |a Made available through: Safari, an O'Reilly Media Company. 
588 0 |a Online resource; Title from title page (viewed January 25, 2020). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
700 1 |a Lee, Denny,  |e author. 
700 1 |a Wenig, Brooke,  |e author. 
700 1 |a Das, Tathagata,  |e author. 
710 2 |a Safari, an O'Reilly Media Company. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781492050032/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP