Cargando…

Applied reinforcement learning with Python : with OpenAI Gym, Tensorflow and Keras /

Delve into the world of reinforcement learning algorithms and apply them to different use-cases via Python. This book covers important topics such as policy gradients and Q learning, and utilizes frameworks such as Tensorflow, Keras, and OpenAI Gym. Applied Reinforcement Learning with Python introdu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Beysolow, Taweh
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Berkely, California] : Apress, [2019]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 a 4500
001 OR_on1114563903
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 190901s2019 cau ob 001 0 eng d
040 |a YDX  |b eng  |e pn  |c YDX  |d GW5XE  |d OCLCF  |d UMI  |d UKMGB  |d OCLCQ  |d UKAHL  |d OCLCQ  |d N$T  |d KSU  |d OCLCO  |d OCLCQ 
015 |a GBB9H8401  |2 bnb 
016 7 |a 019522684  |2 Uk 
019 |a 1122564750 
020 |a 9781484251270  |q (electronic bk.) 
020 |a 148425127X  |q (electronic bk.) 
020 |z 1484251261 
020 |z 9781484251263 
029 1 |a AU@  |b 000066078234 
029 1 |a AU@  |b 000066120839 
029 1 |a AU@  |b 000066128848 
029 1 |a AU@  |b 000066528837 
029 1 |a AU@  |b 000066971562 
029 1 |a AU@  |b 000067075339 
029 1 |a AU@  |b 000067113225 
029 1 |a CHDSB  |b 007124793 
029 1 |a CHVBK  |b 574392793 
029 1 |a UKMGB  |b 019522684 
029 1 |a AU@  |b 000066196389 
035 |a (OCoLC)1114563903  |z (OCoLC)1122564750 
037 |a CL0501000074  |b Safari Books Online 
050 4 |a Q325.6 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
100 1 |a Beysolow, Taweh. 
245 1 0 |a Applied reinforcement learning with Python :  |b with OpenAI Gym, Tensorflow and Keras /  |c Taweh Beysolow II. 
260 |a [Berkely, California] :  |b Apress,  |c [2019] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed September 12, 2019). 
504 |a Includes bibliographical references and index. 
505 0 |a Chapter 1: Introduction to Reinforcement LearningChapter Goal: Inform the reader of the history of the field, its current applications, as well as generally discussing the outline of the text and what the reader can expect to learn No of pages 10Sub -Topics1. What is reinforcement learning? 2. History of reinforcement learning 3. Applications of reinforcement learning Chapter 2: Reinforcement Learning AlgorithmsChapter Goal: Establishing an understanding with the reader about how reinforcement learning algorithms work and how they differ from basic ML/DL methods. Practical examples to be provided for this chapter No of pages: 50 Sub -- Topics 1. Tabular solution methods2. Approximate solution methods Chapter 3: Q Learning Chapter Goal: In this chapter, readers will continue to build on their understanding of RL by solving problems in discrete action spaces No of pages : 40 Sub -- Topics: 1. Deep Q networks2. Double deep Q learning Chapter 4: Reinforcement Learning Based Market Making Chapter Goal: In this chapter, we will focus on a financial based use case, specifically market making, in which we must buy and sell a financial instrument at any given price. We will apply a reinforcement learning approach to this data set and see how it performs over time No of pages: 50Sub -- Topics: 1. Market making 2. AWS/Google Cloud3. Cron Chapter 5: Reinforcement Learning for Video Games Chapter Goal: In this chapter, we will focus on a more generalized use case of reinforcement learning in which we teach an algorithm to successfully play a game against computer based AI. No of pages: 50Sub -- Topics: 1. Game background and data collection. 
520 |a Delve into the world of reinforcement learning algorithms and apply them to different use-cases via Python. This book covers important topics such as policy gradients and Q learning, and utilizes frameworks such as Tensorflow, Keras, and OpenAI Gym. Applied Reinforcement Learning with Python introduces you to the theory behind reinforcement learning (RL) algorithms and the code that will be used to implement them. You will take a guided tour through features of OpenAI Gym, from utilizing standard libraries to creating your own environments, then discover how to frame reinforcement learning problems so you can research, develop, and deploy RL-based solutions. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a OpenAI Gym. 
630 0 0 |a TensorFlow. 
630 0 0 |a Keras. 
650 0 |a Reinforcement learning. 
650 0 |a Python (Computer program language) 
650 6 |a Apprentissage par renforcement (Intelligence artificielle) 
650 6 |a Python (Langage de programmation) 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
650 7 |a Reinforcement learning.  |2 fast  |0 (OCoLC)fst01732553 
776 0 8 |i Print version:  |a Beysolow, Taweh.  |t Applied reinforcement learning with Python.  |d [Berkely, California] : Apress, [2019]  |z 1484251261  |z 9781484251263  |w (OCoLC)1104853827 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484251270/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36919439 
938 |a YBP Library Services  |b YANK  |n 16420481 
938 |a EBSCOhost  |b EBSC  |n 2238413 
994 |a 92  |b IZTAP