Cargando…

Business data science : combining machine learning and economics to optimize, automate, and accelerate business decisions /

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. Use machine learning to understand your customers, frame decisions, and drive value The business analytics...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Taddy, Matt (Autor)
Autor Corporativo: McGraw-Hill Higher Education (Firm)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : McGraw-Hill Education, [2019]
Colección:McGraw-Hill's AccessEngineering.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ii 4500
001 OR_on1112609059
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 190820s2019 nyua ob 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d OTZ  |d COO  |d TEFOD  |d K6U  |d EBLCP  |d N$T  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d UIU  |d Z#U  |d AU@  |d BRF  |d YDX  |d UPM  |d OCLCQ 
019 |a 1153396568  |a 1164500084  |a 1165390835 
020 |a 9781260452785  |q (electronic bk.) 
020 |a 1260452786  |q (electronic bk.) 
020 |z 9781260452778  |q (hardcover) 
020 |z 1260452778  |q (hardcover) 
024 8 |a 1260452786 
024 8 |a 9781260452785 
029 1 |a AU@  |b 000071815812 
029 1 |a AU@  |b 000067098850 
035 |a (OCoLC)1112609059  |z (OCoLC)1153396568  |z (OCoLC)1164500084  |z (OCoLC)1165390835 
037 |a CL0501000066  |b Safari Books Online 
037 |a CE917C3A-C963-439D-A750-EC8983072EEE  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a HD30.23 
082 0 4 |a 004  |2 23/eng/20230711 
084 |a BUS000000  |2 bisacsh 
049 |a UAMI 
100 1 |a Taddy, Matt,  |e author. 
245 1 0 |a Business data science :  |b combining machine learning and economics to optimize, automate, and accelerate business decisions /  |c Matt Taddy. 
264 1 |a New York :  |b McGraw-Hill Education,  |c [2019] 
264 4 |c ©2019 
300 |a 1 online resource (352 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
490 0 |a McGraw-Hill's AccessEngineering 
500 |a Available through AccessEngineering. 
504 |a Includes bibliographical references and index. 
505 0 |a Cover -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Introduction -- 1 Uncertainty -- 2 Regression -- 3 Regularization -- 4 Classification -- 5 Experiments -- 6 Controls -- 7 Factorization -- 8 Text as Data -- 9 Nonparametrics -- 10 Artificial Intelligence -- Bibliography -- Index 
520 |a Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. Use machine learning to understand your customers, frame decisions, and drive value The business analytics world has changed, and Data Scientists are taking over. Business Data Science takes you through the steps of using machine learning to implement best-in-class business data science. Whether you are a business leader with a desire to go deep on data, or an engineer who wants to learn how to apply Machine Learning to business problems, you'll find the information, insight, and tools you need to flourish in today's data-driven economy. You'll learn how to: " se the key building blocks of Machine Learning: sparse regularization, out-of-sample validation, and latent factor and topic modeling " nderstand how use ML tools in real world business problems, where causation matters more that correlation " olve data science programs by scripting in the R programming language Today's business landscape is driven by data and constantly shifting. Companies live and die on their ability to make and implement the right decisions quickly and effectively. Business Data Science is about doing data science right. It's about the exciting things being done around Big Data to run a flourishing business. It's about the precepts, principals, and best practices that you need know for best-in-class business data science 
588 0 |a Description based on resource viewed on July 15, 2023. 
542 |f Copyright © McGraw-Hill 2019  |g 2019 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Decision making  |x Econometric models. 
650 0 |a Machine learning. 
650 6 |a Prise de décision  |x Modèles économétriques. 
650 6 |a Apprentissage automatique. 
650 7 |a information technology.  |2 aat 
650 7 |a BUSINESS & ECONOMICS  |x General.  |2 bisacsh 
650 7 |a Decision making  |x Econometric models.  |2 fast  |0 (OCoLC)fst00889042 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Data Science  |2 gnd 
650 7 |a Entscheidungsfindung  |2 gnd 
650 7 |a Maschinelles Lernen  |2 gnd 
650 7 |a Unternehmen  |2 gnd 
710 2 |a McGraw-Hill Higher Education (Firm) 
776 0 8 |i Print version:  |a Taddy, Matt.  |t Business data science.  |b 1 Edition.  |d New York : McGraw-Hill Education, 2019  |z 9781260452778  |w (DLC) 2018052621  |w (OCoLC)1055264877 
830 0 |a McGraw-Hill's AccessEngineering. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781260452785/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6256975 
938 |a EBSCOhost  |b EBSC  |n 2686343 
938 |a YBP Library Services  |b YANK  |n 16842716 
994 |a 92  |b IZTAP