|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
OR_on1112426164 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
190831s2019 enk ob 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e rda
|e pn
|c EBLCP
|d TEFOD
|d EBLCP
|d TEFOD
|d UKMGB
|d OCLCF
|d UKAHL
|d OCLCQ
|d N$T
|d OCLCQ
|d OCLCO
|d K6U
|d OCLCQ
|
015 |
|
|
|a GBB9E0688
|2 bnb
|
016 |
7 |
|
|a 019505044
|2 Uk
|
020 |
|
|
|a 9781789347883
|q (electronic bk.)
|
020 |
|
|
|a 1789347882
|q (electronic bk.)
|
020 |
|
|
|z 9781789340990
|q (pbk.)
|
029 |
1 |
|
|a UKMGB
|b 019505044
|
035 |
|
|
|a (OCoLC)1112426164
|
037 |
|
|
|a E9677C19-5AAC-4D14-A929-D72AB4297B2A
|b OverDrive, Inc.
|n http://www.overdrive.com
|
050 |
|
4 |
|a Q325.5
|
082 |
0 |
4 |
|a 006.3/1
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Seneque, Gareth,
|e author.
|
245 |
1 |
0 |
|a Hands-on deep learning with Go :
|b a practical guide to building and implementing neural network models using Go /
|c Gareth Seneque, Darrell Chua.
|
264 |
|
1 |
|a Birmingham, UK :
|b Packt Publishing,
|c [2019]
|
264 |
|
4 |
|c ©2019
|
300 |
|
|
|a 1 online resource (228 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b n
|2 rdamedia
|
338 |
|
|
|a online resource
|b nc
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a The Go ecosystem comprises some really powerful Deep Learning tools. This book shows you how to use these tools to train and deploy scalable Deep Learning models. You will explore a number of modern Neural Network architectures such as CNNs, RNNs, and more. By the end, you will be able to train your own Deep Learning models from scratch, using ...
|
505 |
0 |
|
|a Table of ContentsIntroduction to Deep Learning in GoWhat Is a Neural Network and How Do I Train One?Beyond Basic Neural Networks -- Autoencoders and RBMsCUDA -- GPU-Accelerated TrainingNext Word Prediction with Recurrent Neural NetworksObject Recognition with Convolutional Neural NetworksMaze Solving with Deep Q-NetworksGenerative Models with Variational AutoencodersBuilding a Deep Learning PipelineScaling Deployment.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
0 |
|a Go (Computer program language)
|
650 |
|
6 |
|a Apprentissage automatique.
|
650 |
|
6 |
|a Go (Langage de programmation)
|
650 |
|
7 |
|a Go (Computer program language)
|2 fast
|0 (OCoLC)fst01893916
|
650 |
|
7 |
|a Machine learning.
|2 fast
|0 (OCoLC)fst01004795
|
700 |
1 |
|
|a Chua, Darrell,
|e author.
|
776 |
0 |
8 |
|i Print version:
|a Seneque, Gareth.
|t Hands-On Deep Learning with Go : A Practical Guide to Building and Implementing Neural Network Models Using Go.
|d Birmingham : Packt Publishing, Limited, ©2019
|z 9781789340990
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781789340990/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH36568418
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5849398
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 2228072
|
994 |
|
|
|a 92
|b IZTAP
|