Cargando…

Machine learning at enterprise scale : how real practitioners handle six common challenges /

Enterprises in traditional and emerging industries alike are increasingly turning to machine learning (ML) to maximize the value of their business data. But many of these teams are likely to experience significant hurdles and setbacks throughout the journey. In this practical ebook, data scientists...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Cinquegrana, Piero (Autor), Raza, Matheen (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly Media, [2019]
Edición:First edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1112253806
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 190815s2019 caua o 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d CZL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |z 9781492050803 
035 |a (OCoLC)1112253806 
037 |a CL0501000065  |b Safari Books Online 
050 4 |a Q325.5 
049 |a UAMI 
100 1 |a Cinquegrana, Piero,  |e author. 
245 1 0 |a Machine learning at enterprise scale :  |b how real practitioners handle six common challenges /  |c Piero Cinquegrana and Matheen Raza. 
250 |a First edition. 
264 1 |a Sebastopol, CA :  |b O'Reilly Media,  |c [2019] 
264 4 |c Ã2019 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (Safari, viewed August 13, 2019). 
520 |a Enterprises in traditional and emerging industries alike are increasingly turning to machine learning (ML) to maximize the value of their business data. But many of these teams are likely to experience significant hurdles and setbacks throughout the journey. In this practical ebook, data scientists and machine learning engineers explore six common challenges that teams face every day when creating, managing, and scaling ML applications. For each problem, you'll get hard-earned advice from Hussein Mehanna, AI engineering director for Google Cloud; Nakul Arora, VP of product management and marketing at Infosys; Patrick Hall, senior director for data science products at H2O; Matt Harrison, consultant and corporate trainer at MetaSnake; Joao Natali, data science director at Neustar; and Jerry Overton, data scientist and technology fellow at DXC. Accomplished data scientist Piero Cinquegrana and Matheen Raza of Qubole examine ways to overcome challenges that include: Reconciling disparate interfaces Resolving environment dependencies Ensuring close collaboration among all ML stakeholders Building or renting adequate ML infrastructure Meeting the scalability needs of your application Enabling smooth deployment of ML projects. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 0 |a Artificial intelligence. 
650 0 |a Information technology  |x Management. 
650 0 |a Business enterprises  |x Technological innovations. 
650 2 |a Artificial Intelligence 
650 2 |a Machine Learning 
650 6 |a Apprentissage automatique. 
650 6 |a Intelligence artificielle. 
650 6 |a Technologie de l'information  |x Gestion. 
650 6 |a Entreprises  |x Innovations. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence  |2 fast 
650 7 |a Business enterprises  |x Technological innovations  |2 fast 
650 7 |a Information technology  |x Management  |2 fast 
650 7 |a Machine learning  |2 fast 
700 1 |a Raza, Matheen,  |e author. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781492050810/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP