Cargando…

Event Streams in Action /

Event Streams in Action teaches you techniques for aggregating, storing, and processing event streams using the unified log processing pattern. In this hands-on guide, you'll discover important application designs like the lambda architecture, stream aggregation, and event reprocessing. You...

Descripción completa

Detalles Bibliográficos
Autores principales: Crettaz, Valentin (Autor), Dean, Alexander (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Manning Publications, 2019.
Edición:1st edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ma 4500
001 OR_on1107424085
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 190704s2019 xx o 000 0 eng d
040 |a OTZ  |b eng  |e pn  |c OTZ  |d OCLCQ  |d ERF  |d TOH  |d OCLCO  |d CZL  |d OCLCO  |d OCL  |d OCLCQ 
020 |z 9781617292347 
024 8 |a 9781617292347 
029 1 |a AU@  |b 000066230827 
035 |a (OCoLC)1107424085 
082 0 4 |a 005.1/6  |q OCoLC  |2 23/eng/20230216 
049 |a UAMI 
100 1 |a Crettaz, Valentin,  |e author. 
245 1 0 |a Event Streams in Action /  |c Crettaz, Valentin. 
250 |a 1st edition. 
264 1 |b Manning Publications,  |c 2019. 
300 |a 1 online resource (344 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
365 |b 44.99 
520 |a Event Streams in Action teaches you techniques for aggregating, storing, and processing event streams using the unified log processing pattern. In this hands-on guide, you'll discover important application designs like the lambda architecture, stream aggregation, and event reprocessing. You'll also explore scaling, resiliency, advanced stream patterns, and much more! By the time you're finished, you'll be designing large-scale data-driven applications that are easier to build, deploy, and maintain. 
542 |f © 2019 Manning Publications Co. All rights reserved.  |g 2019 
550 |a Made available through: Safari, an O'Reilly Media Company. 
588 0 |a Online resource; Title from title page (viewed May 23, 2019). 
505 0 |a Intro -- Copyright -- Brief Table of Contents -- Table of Contents -- Preface -- Acknowledgments -- About this book -- About the authors -- About the cover illustration -- Part 1. Event streams and unified logs -- Chapter 1. Introducing event streams -- 1.1. Defining our terms -- 1.2. Exploring familiar event streams -- 1.3. Unifying continuous event streams -- 1.4. Introducing use cases for the unified log -- Summary -- Chapter 2. The unified log -- 2.1. Understanding the anatomy of a unified log -- 2.2. Introducing our application -- 2.3. Setting up our unified log -- Summary -- Chapter 3. Event stream processing with Apache Kafka -- 3.1. Event stream processing 101 -- 3.2. Designing our first stream-processing app -- 3.3. Writing a simple Kafka worker -- 3.4. Writing a single-event processor -- Summary -- Chapter 4. Event stream processing with Amazon Kinesis -- 4.1. Writing events to Kinesis -- 4.2. Reading from Kinesis -- Summary -- Chapter 5. Stateful stream processing -- 5.1. Detecting abandoned shopping carts -- 5.2. Modeling our new events -- 5.3. Stateful stream processing -- 5.4. Detecting abandoned carts -- 5.5. Running our Samza job -- Summary -- Part 2. Data engineering with streams -- Chapter 6. Schemas -- 6.1. An introduction to schemas -- 6.2. Modeling our event in Avro -- 6.3. Associating events with their schemas -- Summary -- Chapter 7. Archiving events -- 7.1. The archivist's manifesto -- 7.2. A design for archiving -- 7.3. Archiving Kafka with Secor -- 7.4. Batch processing our archive -- Summary -- Chapter 8. Railway-oriented processing -- 8.1. Leaving the happy path -- 8.2. Failure and the unified log -- 8.3. Failure composition with Scalaz -- 8.4. Implementing railway-oriented processing -- Summary -- Chapter 9. Commands -- 9.1. Commands and the unified log -- 9.2. Making decisions -- 9.3. Consuming our commands. 
505 8 |a 9.4. Executing our commands -- 9.5. Scaling up commands -- Summary -- Part 3. Event analytics -- Chapter 10. Analytics-on-read -- 10.1. Analytics-on-read, analytics-on-write -- 10.2. The OOPS event stream -- 10.3. Getting started with Amazon Redshift -- 10.4. ETL, ELT -- 10.5. Finally, some analysis -- Summary -- Chapter 11. Analytics-on-write -- 11.1. Back to OOPS -- 11.2. Building our Lambda function -- 11.3. Running our Lambda function -- Summary -- Appendix. AWS primer -- A.1. Setting up the AWS account -- A.2. Creating a user -- A.3. Setting up the AWS CLI -- Index -- List of Figures -- List of Tables -- List of Listings. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a Kafka (Electronic resource) 
630 0 0 |a Kinesis (Electronic resource) 
650 0 |a Data logging. 
650 0 |a Data mining. 
650 0 |a Application logging (Computer science) 
650 6 |a Journalisation applicative. 
650 6 |a Exploration de données (Informatique) 
650 7 |a Application logging (Computer science)  |2 fast  |0 (OCoLC)fst00811703 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Data logging.  |2 fast  |0 (OCoLC)fst01893427 
700 1 |a Dean, Alexander,  |e author. 
710 2 |a Safari, an O'Reilly Media Company. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781617292347/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP