Cargando…

Text analytics with Python : a practitioner's guide to natural language processing /

Leverage Natural Language Processing (NLP) in Python and learn how to set up your own robust environment for performing text analytics. The second edition of this book will show you how to use the latest state-of-the-art frameworks in NLP, coupled with Machine Learning and Deep Learning to solve rea...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sarkar, Dipanjan (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [New York, NY] : Apress, [2019]
Edición:Second edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1102321093
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 190523s2019 nyu ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d EBLCP  |d YDXIT  |d LQU  |d GW5XE  |d UKMGB  |d OCLCF  |d UMI  |d TEFOD  |d DCT  |d LEATE  |d SNK  |d BUR  |d OCLCQ  |d UKAHL  |d BRF  |d OCLCQ  |d OCLCO  |d COM  |d OCLCQ  |d OCLCO 
015 |a GBB9A6390  |2 bnb 
016 7 |a 019415718  |2 Uk 
019 |a 1105184225  |a 1107052646  |a 1110905339  |a 1122810503  |a 1179566493 
020 |a 9781484243541  |q (electronic book) 
020 |a 1484243544  |q (electronic book) 
020 |z 9781484243534 
024 7 |a 10.1007/978-1-4842-4  |2 doi 
024 8 |a 10.1007/978-1-4842-4354-1 
029 1 |a AU@  |b 000065346189 
029 1 |a AU@  |b 000065352272 
029 1 |a AU@  |b 000066234150 
029 1 |a CHDSB  |b 007124841 
029 1 |a CHVBK  |b 574393455 
029 1 |a UKMGB  |b 019415718 
035 |a (OCoLC)1102321093  |z (OCoLC)1105184225  |z (OCoLC)1107052646  |z (OCoLC)1110905339  |z (OCoLC)1122810503  |z (OCoLC)1179566493 
037 |a com.springer.onix.9781484243541  |b Springer Nature 
037 |a 94F27A83-E373-4C52-9C49-DD3BB23C32E7  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.73.P98  |b S27 2019 
072 7 |a COM  |x 0510000  |2 bisacsh 
082 0 4 |a 006.3/5  |2 23 
082 0 4 |a 005.133  |2 23 
049 |a UAMI 
100 1 |a Sarkar, Dipanjan,  |e author. 
245 1 0 |a Text analytics with Python :  |b a practitioner's guide to natural language processing /  |c Dipanjan Sarkar. 
250 |a Second edition. 
264 1 |a [New York, NY] :  |b Apress,  |c [2019] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
588 0 |a Online resource; title from digital title page (viewed on June 19, 2019). 
505 0 |a Natural language processing basics -- Python for natural language processing -- Processing and understanding text -- Feature engineering for text data -- Text classification -- Text summarization and topic modeling -- Text clustering and similarity analysis -- Sentiment analysis -- Deep learning in NLP. 
520 |a Leverage Natural Language Processing (NLP) in Python and learn how to set up your own robust environment for performing text analytics. The second edition of this book will show you how to use the latest state-of-the-art frameworks in NLP, coupled with Machine Learning and Deep Learning to solve real-world case studies leveraging the power of Python. This edition has gone through a major revamp introducing several major changes and new topics based on the recent trends in NLP. We have a dedicated chapter around Python for NLP covering fundamentals on how to work with strings and text data along with introducing the current state-of-the-art open-source frameworks in NLP. We have a dedicated chapter on feature engineering representation methods for text data including both traditional statistical models and newer deep learning based embedding models. Techniques around parsing and processing text data have also been improved with some new methods. Considering popular NLP applications, for text classification, we also cover methods for tuning and improving our models. Text Summarization has gone through a major overhaul in the context of topic models where we showcase how to build, tune and interpret topic models in the context of an interest dataset on NIPS conference papers. Similarly, we cover text similarity techniques with a real-world example of movie recommenders. Sentiment Analysis is covered in-depth with both supervised and unsupervised techniques. We also cover both machine learning and deep learning models for supervised sentiment analysis. Semantic Analysis gets its own dedicated chapter where we also showcase how you can build your own Named Entity Recognition (NER) system from scratch. To conclude things, we also have a completely new chapter on the promised of Deep Learning for NLP where we also showcase a hands-on example on deep transfer learning. While the overall structure of the book remains the same, the entire code base, modules, and chapters will be updated to the latest Python 3.x release. 
504 |a Includes bibliographical references and index. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Python (Computer program language) 
650 6 |a Python (Langage de programmation) 
650 7 |a COMPUTERS  |x Programming  |x General.  |2 bisacsh 
650 7 |a Python (Computer program language)  |2 fast 
776 0 8 |i Printed edition:  |z 9781484243534 
776 0 8 |i Printed edition:  |z 9781484243558 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484243541/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36391483 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5778375 
938 |a EBSCOhost  |b EBSC  |n 2142245 
994 |a 92  |b IZTAP