Cargando…

Graph algorithms : practical examples in Apache Spark and Neo4j /

Learn how graph algorithms can help you leverage relationships within your data to develop intelligent solutions and enhance your machine learning models. With this practical guide, developers and data scientists will discover how graph analytics deliver value, whether they're used for building...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Needham, Mark (Autor), Hodler, Amy E. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Beijing : O'Reilly, 2019.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1102049191
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 190522s2019 cc o 000 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d EBLCP  |d OCLCF  |d UMI  |d YDX  |d UKAHL  |d OCLCQ  |d MIA  |d DST  |d OCLCQ  |d OCLCO  |d TEFOD  |d OCLCQ  |d OCLCO 
019 |a 1103605705 
020 |a 9781492047650  |q (electronic bk.) 
020 |a 1492047651  |q (electronic bk.) 
020 |a 9781492047636  |q (electronic bk.) 
020 |a 1492047635  |q (electronic bk.) 
020 |z 9781492047681 
029 1 |a AU@  |b 000065540229 
035 |a (OCoLC)1102049191  |z (OCoLC)1103605705 
037 |a CL0501000052  |b Safari Books Online 
037 |a 2A39C986-1F68-4FAB-9ABC-D002477BB7B6  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA166 
072 7 |a MAT  |x 000000  |2 bisacsh 
082 0 4 |a 511/.5  |2 23 
049 |a UAMI 
100 1 |a Needham, Mark,  |e author. 
245 1 0 |a Graph algorithms :  |b practical examples in Apache Spark and Neo4j /  |c Mark Needham and Amy E. Hodler. 
264 1 |a Beijing :  |b O'Reilly,  |c 2019. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed May 23, 2019) 
505 0 |a Cover; Copyright; Table of Contents; Preface; What's in This Book; Conventions Used in This Book; Using Code Examples; O'Reilly Online Learning; How to Contact Us; Acknowledgments; Foreword; Chapter 1. Introduction; What Are Graphs?; What Are Graph Analytics and Algorithms?; Graph Processing, Databases, Queries, and Algorithms; OLTP and OLAP; Why Should We Care About Graph Algorithms?; Graph Analytics Use Cases; Conclusion; Chapter 2. Graph Theory and Concepts; Terminology; Graph Types and Structures; Random, Small-World, Scale-Free Structures; Flavors of Graphs 
505 8 |a Connected Versus Disconnected GraphsUnweighted Graphs Versus Weighted Graphs; Undirected Graphs Versus Directed Graphs; Acyclic Graphs Versus Cyclic Graphs; Sparse Graphs Versus Dense Graphs; Monopartite, Bipartite, and k-Partite Graphs; Types of Graph Algorithms; Pathfinding; Centrality; Community Detection; Summary; Chapter 3. Graph Platforms and Processing; Graph Platform and Processing Considerations; Platform Considerations; Processing Considerations; Representative Platforms; Selecting Our Platform; Apache Spark; Neo4j Graph Platform; Summary 
505 8 |a Chapter 4. Pathfinding and Graph Search AlgorithmsExample Data: The Transport Graph; Importing the Data into Apache Spark; Importing the Data into Neo4j; Breadth First Search; Breadth First Search with Apache Spark; Depth First Search; Shortest Path; When Should I Use Shortest Path?; Shortest Path with Neo4j; Shortest Path (Weighted) with Neo4j; Shortest Path (Weighted) with Apache Spark; Shortest Path Variation: A*; Shortest Path Variation: Yen's k-Shortest Paths; All Pairs Shortest Path; A Closer Look at All Pairs Shortest Path; When Should I Use All Pairs Shortest Path? 
505 8 |a All Pairs Shortest Path with Apache SparkAll Pairs Shortest Path with Neo4j; Single Source Shortest Path; When Should I Use Single Source Shortest Path?; Single Source Shortest Path with Apache Spark; Single Source Shortest Path with Neo4j; Minimum Spanning Tree; When Should I Use Minimum Spanning Tree?; Minimum Spanning Tree with Neo4j; Random Walk; When Should I Use Random Walk?; Random Walk with Neo4j; Summary; Chapter 5. Centrality Algorithms; Example Graph Data: The Social Graph; Importing the Data into Apache Spark; Importing the Data into Neo4j; Degree Centrality; Reach 
505 8 |a When Should I Use Degree Centrality?Degree Centrality with Apache Spark; Closeness Centrality; When Should I Use Closeness Centrality?; Closeness Centrality with Apache Spark; Closeness Centrality with Neo4j; Closeness Centrality Variation: Wasserman and Faust; Closeness Centrality Variation: Harmonic Centrality; Betweenness Centrality; When Should I Use Betweenness Centrality?; Betweenness Centrality with Neo4j; Betweenness Centrality Variation: Randomized-Approximate Brandes; PageRank; Influence; The PageRank Formula; Iteration, Random Surfers, and Rank Sinks; When Should I Use PageRank? 
520 |a Learn how graph algorithms can help you leverage relationships within your data to develop intelligent solutions and enhance your machine learning models. With this practical guide, developers and data scientists will discover how graph analytics deliver value, whether they're used for building dynamic network models or forecasting real-world behavior. Mark Needham and Amy Hodler from Neo4j explain how graph algorithms describe complex structures and reveal difficult-to-find patterns-from finding vulnerabilities and bottlenecksto detecting communities and improving machine learning predictions. You'll walk through hands-on examples that show you how to use graph algorithms in Apache Spark and Neo4j, two of the most common choices for graph analytics. Learn how graph analytics reveal more predictive elements in today's data Understand how popular graph algorithms work and how they're applied Use sample code and tips from more than 20 graph algorithm examples Learn which algorithms to use for different types of questions Explore examples with working code and sample datasets for Spark and Neo4j Create an ML workflow for link prediction by combining Neo4j and Spark. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a Spark (Electronic resource : Apache Software Foundation) 
630 0 7 |a Spark (Electronic resource : Apache Software Foundation)  |2 fast 
650 0 |a Graph algorithms. 
650 6 |a Algorithmes de graphes. 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a Graph algorithms  |2 fast 
700 1 |a Hodler, Amy E.,  |e author. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781492047674/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36347526 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5778828 
938 |a EBSCOhost  |b EBSC  |n 2141755 
938 |a YBP Library Services  |b YANK  |n 300553555 
994 |a 92  |b IZTAP