Cargando…

Applied unsupervised learning with R /

Design clever algorithms that discover hidden patterns and draw responses from unstructured, unlabeled data. Key Features Build state-of-the-art algorithms that can solve your business' problems Learn how to find hidden patterns in your data Revise key concepts with hands-on exercises using rea...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Malik, Alok (Autor), Tuckfield, Bradford (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2019.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1101443855
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 190516s2019 enka ob 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d CEF  |d OCLCF  |d C6I  |d YDX  |d OCLCQ  |d OCLCO  |d KSU  |d OCLCQ 
019 |a 1091250090 
020 |a 9781789951462 
020 |a 1789951461 
020 |z 9781789956399 
035 |a (OCoLC)1101443855  |z (OCoLC)1091250090 
037 |a CL0501000048  |b Safari Books Online 
050 4 |a QA276.45.R3 
082 0 4 |a 519.502855133  |q OCoLC  |2 23/eng/20230216 
049 |a UAMI 
100 1 |a Malik, Alok,  |e author. 
245 1 0 |a Applied unsupervised learning with R /  |c Alok Malik and Bradford Tuckfield. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2019. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from copyright page (Safari, viewed May 15, 2019). 
504 |a Includes bibliographical references. 
520 |a Design clever algorithms that discover hidden patterns and draw responses from unstructured, unlabeled data. Key Features Build state-of-the-art algorithms that can solve your business' problems Learn how to find hidden patterns in your data Revise key concepts with hands-on exercises using real-world datasets Book Description Starting with the basics, Applied Unsupervised Learning with R explains clustering methods, distribution analysis, data encoders, and features of R that enable you to understand your data better and get answers to your most pressing business questions. This book begins with the most important and commonly used method for unsupervised learning - clustering - and explains the three main clustering algorithms - k-means, divisive, and agglomerative. Following this, you'll study market basket analysis, kernel density estimation, principal component analysis, and anomaly detection. You'll be introduced to these methods using code written in R, with further instructions on how to work with, edit, and improve R code. To help you gain a practical understanding, the book also features useful tips on applying these methods to real business problems, including market segmentation and fraud detection. By working through interesting activities, you'll explore data encoders and latent variable models. By the end of this book, you will have a better understanding of different anomaly detection methods, such as outlier detection, Mahalanobis distances, and contextual and collective anomaly detection. What you will learn Implement clustering methods such as k-means, agglomerative, and divisive Write code in R to analyze market segmentation and consumer behavior Estimate distribution and probabilities of different outcomes Implement dimension reduction using principal component analysis Apply anomaly detection methods to identify fraud Design algorithms with R and learn how to edit or improve code Who this book is for Applied Unsupervised Learning with R is designed for business professionals who want to learn about methods to understand their data better, and developers who have an interest in unsupervised learning. Although the book is for beginners, it will be beneficial to have some basic, beginner-level familiarity with R. This includes an understanding of how to open the R console, how to read data, and how to create a loop. To easily understand the concepts of this book, you should also know basic mathematical concepts, including ex ... 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a R (Computer program language) 
650 0 |a Machine learning. 
650 0 |a Data mining. 
650 2 |a Data Mining 
650 6 |a R (Langage de programmation) 
650 6 |a Apprentissage automatique. 
650 6 |a Exploration de données (Informatique) 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a R (Computer program language)  |2 fast  |0 (OCoLC)fst01086207 
700 1 |a Tuckfield, Bradford,  |e author. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781789956399/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a YBP Library Services  |b YANK  |n 16136950 
994 |a 92  |b IZTAP