Cargando…

Hands-on big data analytics with PySpark : analyze large datasets and discover techniques for testing, immunizing, and parallelizing Spark jobs /

In this book, you'll learn to implement some practical and proven techniques to improve aspects of programming and administration in Apache Spark. Techniques are demonstrated using practical examples and best practices. You will also learn how to use Spark and its Python API to create performan...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Lai, Rudy (Autor), Potaczek, Bartłomiej (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2019.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1100643398
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 190509s2019 enka o 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d TEFOD  |d EBLCP  |d MERUC  |d UKMGB  |d OCLCF  |d YDX  |d UKAHL  |d OCLCQ  |d N$T  |d OCLCQ  |d OCLCO  |d NZAUC  |d OCLCQ  |d OCLCO 
015 |a GBB995016  |2 bnb 
016 7 |a 019365492  |2 Uk 
019 |a 1091701284  |a 1096526626 
020 |a 1838648836 
020 |a 9781838648831  |q (electronic bk.) 
020 |z 9781838644130 
029 1 |a AU@  |b 000066230238 
029 1 |a CHNEW  |b 001053176 
029 1 |a CHVBK  |b 567698580 
029 1 |a UKMGB  |b 019365492 
029 1 |a AU@  |b 000065333097 
029 1 |a AU@  |b 000069022716 
035 |a (OCoLC)1100643398  |z (OCoLC)1091701284  |z (OCoLC)1096526626 
037 |a CL0501000047  |b Safari Books Online 
050 4 |a QA76.73.S59 
082 0 4 |a 004.2  |2 23 
049 |a UAMI 
100 1 |a Lai, Rudy,  |e author. 
245 1 0 |a Hands-on big data analytics with PySpark :  |b analyze large datasets and discover techniques for testing, immunizing, and parallelizing Spark jobs /  |c Rudy Lai, Bartłomiej Potaczek. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2019. 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (Safari, viewed May 9, 2019). 
505 0 |a Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Pyspark and Setting up Your Development Environment; An overview of PySpark; Spark SQL; Setting up Spark on Windows and PySpark; Core concepts in Spark and PySpark; SparkContext; Spark shell; SparkConf; Summary; Chapter 2: Getting Your Big Data into the Spark Environment Using RDDs; Loading data on to Spark RDDs; The UCI machine learning repository; Getting the data from the repository to Spark; Getting data into Spark; Parallelization with Spark RDDs; What is parallelization? 
505 8 |a Basics of RDD operationSummary; Chapter 3: Big Data Cleaning and Wrangling with Spark Notebooks; Using Spark Notebooks for quick iteration of ideas; Sampling/filtering RDDs to pick out relevant data points; Splitting datasets and creating some new combinations; Summary; Chapter 4: Aggregating and Summarizing Data into Useful Reports; Calculating averages with map and reduce; Faster average computations with aggregate; Pivot tabling with key-value paired data points; Summary; Chapter 5: Powerful Exploratory Data Analysis with MLlib; Computing summary statistics with MLlib 
505 8 |a Using Pearson and Spearman correlations to discover correlationsThe Pearson correlation; The Spearman correlation; Computing Pearson and Spearman correlations; Testing our hypotheses on large datasets; Summary; Chapter 6: Putting Structure on Your Big Data with SparkSQL; Manipulating DataFrames with Spark SQL schemas; Using Spark DSL to build queries; Summary; Chapter 7: Transformations and Actions; Using Spark transformations to defer computations to a later time; Avoiding transformations; Using the reduce and reduceByKey methods to calculate the results 
505 8 |a Performing actions that trigger computationsReusing the same rdd for different actions; Summary; Chapter 8: Immutable Design; Delving into the Spark RDD's parent/child chain; Extending an RDD; Chaining a new RDD with the parent; Testing our custom RDD; Using RDD in an immutable way; Using DataFrame operations to transform; Immutability in the highly concurrent environment; Using the Dataset API in an immutable way; Summary; Chapter 9: Avoiding Shuffle and Reducing Operational Expenses; Detecting a shuffle in a process; Testing operations that cause a shuffle in Apache Spark 
505 8 |a Changing the design of jobs with wide dependenciesUsing keyBy() operations to reduce shuffle; Using a custom partitioner to reduce shuffle; Summary; Chapter 10: Saving Data in the Correct Format; Saving data in plain text format; Leveraging JSON as a data format; Tabular formats -- CSV; Using Avro with Spark; Columnar formats -- Parquet; Summary; Chapter 11: Working with the Spark Key/Value API; Available actions on key/value pairs; Using aggregateByKey instead of groupBy(); Actions on key/value pairs; Available partitioners on key/value data; Implementing a custom partitioner; Summary 
520 |a In this book, you'll learn to implement some practical and proven techniques to improve aspects of programming and administration in Apache Spark. Techniques are demonstrated using practical examples and best practices. You will also learn how to use Spark and its Python API to create performant analytics with large-scale data. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a SPARK (Computer program language) 
650 0 |a Application software  |x Development. 
650 0 |a Big data. 
650 0 |a Electronic data processing. 
650 0 |a Python (Computer program language) 
650 6 |a Logiciels d'application  |x Développement. 
650 6 |a Données volumineuses. 
650 6 |a Python (Langage de programmation) 
650 7 |a Application software  |x Development  |2 fast 
650 7 |a Big data  |2 fast 
650 7 |a Electronic data processing  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
650 7 |a SPARK (Computer program language)  |2 fast 
700 1 |a Potaczek, Bartłomiej,  |e author. 
776 0 8 |i Print version:  |a Lai, Rudy.  |t Hands-On Big Data Analytics with Pyspark : Analyze Large Datasets and Discover Techniques for Testing, Immunizing, and Parallelizing Spark Jobs.  |d Birmingham : Packt Publishing Ltd, ©2019  |z 9781838644130 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781838644130/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n BDZ0039952975 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5744445 
938 |a EBSCOhost  |b EBSC  |n 2094759 
938 |a YBP Library Services  |b YANK  |n 16142491 
994 |a 92  |b IZTAP