Cargando…

Portfolio and investment analysis with SAS : financial modeling techniques for optimization /

Choose statistically significant stock selection models using SAS® Portfolio and Investment Analysis with SAS®: Financial Modeling Techniques for Optimization is an introduction to using SAS to choose statistically significant stock selection models, create mean-variance efficient portfolios, and ag...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Guerard, John (Autor), Wang, Ziwei (Autor), Xu, Ganlin (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cary, NC : SAS Institute, 2019.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_on1099564739
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 190501s2019 ncua ob 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d YDX  |d DST  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 1091844921 
020 |a 9781635266917 
020 |a 1635266912 
020 |z 9781635266894 
020 |z 9781635266900 
020 |z 9781635266924 
035 |a (OCoLC)1099564739  |z (OCoLC)1091844921 
037 |a CL0501000045  |b Safari Books Online 
050 4 |a HG4521 
082 0 4 |a 332.6  |2 23 
049 |a UAMI 
100 1 |a Guerard, John,  |e author. 
245 1 0 |a Portfolio and investment analysis with SAS :  |b financial modeling techniques for optimization /  |c John B. Guerard, Ganlin Xu, Ziwei Wang. 
264 1 |a Cary, NC :  |b SAS Institute,  |c 2019. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from cover (viewed April 29, 2019). 
504 |a Includes bibliographical references and index. 
520 |a Choose statistically significant stock selection models using SAS® Portfolio and Investment Analysis with SAS®: Financial Modeling Techniques for Optimization is an introduction to using SAS to choose statistically significant stock selection models, create mean-variance efficient portfolios, and aggressively invest to maximize the geometric mean. Based on the pioneering portfolio selection techniques of Harry Markowitz and others, this book shows that maximizing the geometric mean maximizes the utility of final wealth. The authors draw on decades of experience as teachers and practitioners of financial modeling to bridge the gap between theory and application. Using real-world data, the book illustrates the concept of risk-return analysis and explains why intelligent investors prefer stocks over bonds. The authors first explain how to build expected return models based on expected earnings data, valuation ratios, and past stock price performance using PROC ROBUSTREG. They then show how to construct and manage portfolios by combining the expected return and risk models. Finally, readers learn how to perform hypothesis testing using Bayesian methods to add confidence when data mining from large financial databases. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Portfolio management. 
650 0 |a Investment analysis. 
650 0 |a Investments. 
650 2 |a Investments 
650 6 |a Gestion de portefeuille. 
650 6 |a Analyse financière. 
650 6 |a Investissements. 
650 7 |a Investment analysis  |2 fast 
650 7 |a Investments  |2 fast 
650 7 |a Portfolio management  |2 fast 
700 1 |a Wang, Ziwei,  |e author. 
700 1 |a Xu, Ganlin,  |e author. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781635266894/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a YBP Library Services  |b YANK  |n 16145549 
994 |a 92  |b IZTAP