Beyond Spreadsheets with R /
With Beyond Spreadsheets with R you'll learn how to go from raw data to meaningful insights using R and RStudio. Each carefully crafted chapter covers a unique way to wrangle data, from understanding individual values to interacting with complex collections of data, including data you scrape fr...
Autor principal: | |
---|---|
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Manning Publications,
2019.
|
Edición: | 1st edition. |
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- Intro
- Titlepage
- Copyright
- preface
- acknowledgments
- about this book
- Who needs this book?
- How to read this book
- Formatting
- Structure
- Getting started
- Where to find more help
- More about this book
- Book forum
- about the author
- about the cover illustration
- Chapter 1: Introducing data and the R language
- 1.1 Data: What, where, how?
- 1.1.1 What is data?
- 1.1.2 Seeing the world as data sources
- 1.1.3 Data munging
- 1.1.4 What you can do with well-handled data
- 1.1.5 Data as an asset
- 1.1.6 Reproducible research and version control
- 1.2 Introducing R
- 1.2.1 The origins of R
- 1.2.2 What R is and what it isn't
- 1.3 How R works
- 1.4 Introducing RStudio
- 1.4.1 Working with R within RStudio
- 1.4.2 Built-in packages (data and functions)
- 1.4.3 Built-in documentation
- 1.4.4 Vignettes
- 1.5 Try it yourself
- Terminology
- Summary
- Chapter 2: Getting to know R data types
- 2.1 Types of data
- 2.1.1 Numbers
- 2.1.2 Text (strings)
- 2.1.3 Categories (factors)
- 2.1.4 Dates and times
- 2.1.5 Logicals
- 2.1.6 Missing values
- 2.2 Storing values (assigning)
- 2.2.1 Naming data (variables)
- 2.2.2 Unchanging data
- 2.2.3 The assignment operators (<
- vs. =)
- 2.3 Specifying the data type
- 2.4 Telling R to ignore something
- 2.5 Try it yourself
- Terminology
- Summary
- Chapter 3: Making new data values
- 3.1 Basic mathematics
- 3.2 Operator precedence
- 3.3 String concatenation (joining)
- 3.4 Comparisons
- 3.5 Automatic conversion (coercion)
- 3.6 Try it yourself
- Terminology
- Summary
- Chapter 4: Understanding the tools you'll use: Functions
- 4.1 Functions
- 4.1.1 Under the hood
- 4.1.2 Function template
- 4.1.3 Arguments
- 4.1.4 Multiple arguments
- 4.1.5 Default arguments
- 4.1.6 Argument name matching
- 4.1.7 Partial matching
- 4.1.8 Scope.
- 4.2 Packages
- 4.2.1 Installing packages
- 4.2.2 How does R (not) know about this function?
- 4.2.3 Namespaces
- 4.3 Messages, warnings, and errors, oh my!
- 4.3.1 Creating messages, warnings, and errors
- 4.3.2 Diagnosing messages, warnings, and errors
- 4.4 Testing
- 4.5 Project: Generalizing a function
- 4.6 Try it yourself
- Terminology
- Summary
- Chapter 5: Combining data values
- 5.1 Simple collections
- 5.1.1 Coercion
- 5.1.2 Missing values
- 5.1.3 Attributes
- 5.1.4 Names
- 5.2 Sequences
- 5.2.1 Vector functions
- 5.2.2 Vector math operations
- 5.3 Matrices
- 5.3.1 Naming dimensions
- 5.4 Lists
- 5.5 data.frames
- 5.6 Classes
- 5.6.1 The tibble class
- 5.6.2 Structures as function arguments
- 5.7 Try it yourself
- Terminology
- Summary
- Chapter 6: Selecting data values
- 6.1 Text processing
- 6.1.1 Text matching
- 6.1.2 Substrings
- 6.1.3 Text substitutions
- 6.1.4 Regular expressions
- 6.2 Selecting components from structures
- 6.2.1 Vectors
- 6.2.2 Lists
- 6.2.3 Matrices
- 6.3 Replacing values
- 6.4 data.frames and dplyr
- 6.4.1 dplyr verbs
- 6.4.2 Non-standard evaluation
- 6.4.3 Pipes
- 6.4.4 Subsetting data.frame the hard way
- 6.5 Replacing NA
- 6.6 Selecting conditionally
- 6.7 Summarizing values
- 6.8 A worked example: Excel vs. R
- 6.9 Try it yourself
- 6.9.1 Solutions
- no peeking
- Terminology
- Summary
- Chapter 7: Doing things with lots of data
- 7.1 Tidy data principles
- 7.1.1 The working directory
- 7.1.2 Stored data formats
- 7.1.3 Reading data into R
- 7.1.4 Scraping data
- 7.1.5 Inspecting data
- 7.1.6 Dealing with odd values in data (sentinel values)
- 7.1.7 Converting to tidy data
- 7.2 Merging data
- 7.3 Writing data from R
- 7.4 Try it yourself
- Terminology
- Summary
- Chapter 8: Doing things conditionally: Control structures
- 8.1 Looping.
- 8.1.1 Vectorization
- 8.1.2 Tidy repetition: Looping with purrr
- 8.1.3 for loops
- 8.2 Wider and narrower loop scope
- 8.2.1 while loops
- 8.3 Conditional evaluation
- 8.3.1 if conditions
- 8.3.2 ifelse conditions
- 8.4 Try it yourself
- Terminology
- Summary
- Chapter 9: Visualizing data: Plotting
- 9.1 Data preparation
- 9.1.1 Tidy data, revisited
- 9.1.2 Importance of data types
- 9.2 ggplot2
- 9.2.1 General construction
- 9.2.2 Adding points
- 9.2.3 Style aesthetics
- 9.2.4 Adding lines
- 9.2.5 Adding bars
- 9.2.6 Other types of plots
- 9.2.7 Scales
- 9.2.8 Facetting
- 9.2.9 Additional options
- 9.3 Plots as objects
- 9.4 Saving plots
- 9.5 Try it yourself
- Terminology
- Summary
- Chapter 10: Doing more with your data with extensions
- 10.1 Writing your own packages
- 10.1.1 Creating a minimal package
- 10.1.2 Documentation
- 10.2 Analyzing your package
- 10.2.1 Unit testing
- 10.2.2 Profiling
- 10.3 What to do next?
- 10.3.1 Regression
- 10.3.2 Clustering
- 10.3.3 Working with maps
- 10.3.4 Interacting with APIs
- 10.3.5 Sharing your package
- 10.4 More resources
- Terminology
- Summary
- Appendix A: Installing R
- Windows
- Mac
- Linux
- From source
- Appendix B: Installing RStudio
- Installing RStudio
- Packages used in this book
- Appendix C: Graphics in base R
- Index
- List of Figures
- List of Tables
- List of Listings.