Cargando…

Beyond Spreadsheets with R /

With Beyond Spreadsheets with R you'll learn how to go from raw data to meaningful insights using R and RStudio. Each carefully crafted chapter covers a unique way to wrangle data, from understanding individual values to interacting with complex collections of data, including data you scrape fr...

Descripción completa

Detalles Bibliográficos
Autor principal: Carroll, Jon (Autor)
Autor Corporativo: Safari, an O'Reilly Media Company
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Manning Publications, 2019.
Edición:1st edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Intro
  • Titlepage
  • Copyright
  • preface
  • acknowledgments
  • about this book
  • Who needs this book?
  • How to read this book
  • Formatting
  • Structure
  • Getting started
  • Where to find more help
  • More about this book
  • Book forum
  • about the author
  • about the cover illustration
  • Chapter 1: Introducing data and the R language
  • 1.1 Data: What, where, how?
  • 1.1.1 What is data?
  • 1.1.2 Seeing the world as data sources
  • 1.1.3 Data munging
  • 1.1.4 What you can do with well-handled data
  • 1.1.5 Data as an asset
  • 1.1.6 Reproducible research and version control
  • 1.2 Introducing R
  • 1.2.1 The origins of R
  • 1.2.2 What R is and what it isn't
  • 1.3 How R works
  • 1.4 Introducing RStudio
  • 1.4.1 Working with R within RStudio
  • 1.4.2 Built-in packages (data and functions)
  • 1.4.3 Built-in documentation
  • 1.4.4 Vignettes
  • 1.5 Try it yourself
  • Terminology
  • Summary
  • Chapter 2: Getting to know R data types
  • 2.1 Types of data
  • 2.1.1 Numbers
  • 2.1.2 Text (strings)
  • 2.1.3 Categories (factors)
  • 2.1.4 Dates and times
  • 2.1.5 Logicals
  • 2.1.6 Missing values
  • 2.2 Storing values (assigning)
  • 2.2.1 Naming data (variables)
  • 2.2.2 Unchanging data
  • 2.2.3 The assignment operators (&lt
  • vs. =)
  • 2.3 Specifying the data type
  • 2.4 Telling R to ignore something
  • 2.5 Try it yourself
  • Terminology
  • Summary
  • Chapter 3: Making new data values
  • 3.1 Basic mathematics
  • 3.2 Operator precedence
  • 3.3 String concatenation (joining)
  • 3.4 Comparisons
  • 3.5 Automatic conversion (coercion)
  • 3.6 Try it yourself
  • Terminology
  • Summary
  • Chapter 4: Understanding the tools you'll use: Functions
  • 4.1 Functions
  • 4.1.1 Under the hood
  • 4.1.2 Function template
  • 4.1.3 Arguments
  • 4.1.4 Multiple arguments
  • 4.1.5 Default arguments
  • 4.1.6 Argument name matching
  • 4.1.7 Partial matching
  • 4.1.8 Scope.
  • 4.2 Packages
  • 4.2.1 Installing packages
  • 4.2.2 How does R (not) know about this function?
  • 4.2.3 Namespaces
  • 4.3 Messages, warnings, and errors, oh my!
  • 4.3.1 Creating messages, warnings, and errors
  • 4.3.2 Diagnosing messages, warnings, and errors
  • 4.4 Testing
  • 4.5 Project: Generalizing a function
  • 4.6 Try it yourself
  • Terminology
  • Summary
  • Chapter 5: Combining data values
  • 5.1 Simple collections
  • 5.1.1 Coercion
  • 5.1.2 Missing values
  • 5.1.3 Attributes
  • 5.1.4 Names
  • 5.2 Sequences
  • 5.2.1 Vector functions
  • 5.2.2 Vector math operations
  • 5.3 Matrices
  • 5.3.1 Naming dimensions
  • 5.4 Lists
  • 5.5 data.frames
  • 5.6 Classes
  • 5.6.1 The tibble class
  • 5.6.2 Structures as function arguments
  • 5.7 Try it yourself
  • Terminology
  • Summary
  • Chapter 6: Selecting data values
  • 6.1 Text processing
  • 6.1.1 Text matching
  • 6.1.2 Substrings
  • 6.1.3 Text substitutions
  • 6.1.4 Regular expressions
  • 6.2 Selecting components from structures
  • 6.2.1 Vectors
  • 6.2.2 Lists
  • 6.2.3 Matrices
  • 6.3 Replacing values
  • 6.4 data.frames and dplyr
  • 6.4.1 dplyr verbs
  • 6.4.2 Non-standard evaluation
  • 6.4.3 Pipes
  • 6.4.4 Subsetting data.frame the hard way
  • 6.5 Replacing NA
  • 6.6 Selecting conditionally
  • 6.7 Summarizing values
  • 6.8 A worked example: Excel vs. R
  • 6.9 Try it yourself
  • 6.9.1 Solutions
  • no peeking
  • Terminology
  • Summary
  • Chapter 7: Doing things with lots of data
  • 7.1 Tidy data principles
  • 7.1.1 The working directory
  • 7.1.2 Stored data formats
  • 7.1.3 Reading data into R
  • 7.1.4 Scraping data
  • 7.1.5 Inspecting data
  • 7.1.6 Dealing with odd values in data (sentinel values)
  • 7.1.7 Converting to tidy data
  • 7.2 Merging data
  • 7.3 Writing data from R
  • 7.4 Try it yourself
  • Terminology
  • Summary
  • Chapter 8: Doing things conditionally: Control structures
  • 8.1 Looping.
  • 8.1.1 Vectorization
  • 8.1.2 Tidy repetition: Looping with purrr
  • 8.1.3 for loops
  • 8.2 Wider and narrower loop scope
  • 8.2.1 while loops
  • 8.3 Conditional evaluation
  • 8.3.1 if conditions
  • 8.3.2 ifelse conditions
  • 8.4 Try it yourself
  • Terminology
  • Summary
  • Chapter 9: Visualizing data: Plotting
  • 9.1 Data preparation
  • 9.1.1 Tidy data, revisited
  • 9.1.2 Importance of data types
  • 9.2 ggplot2
  • 9.2.1 General construction
  • 9.2.2 Adding points
  • 9.2.3 Style aesthetics
  • 9.2.4 Adding lines
  • 9.2.5 Adding bars
  • 9.2.6 Other types of plots
  • 9.2.7 Scales
  • 9.2.8 Facetting
  • 9.2.9 Additional options
  • 9.3 Plots as objects
  • 9.4 Saving plots
  • 9.5 Try it yourself
  • Terminology
  • Summary
  • Chapter 10: Doing more with your data with extensions
  • 10.1 Writing your own packages
  • 10.1.1 Creating a minimal package
  • 10.1.2 Documentation
  • 10.2 Analyzing your package
  • 10.2.1 Unit testing
  • 10.2.2 Profiling
  • 10.3 What to do next?
  • 10.3.1 Regression
  • 10.3.2 Clustering
  • 10.3.3 Working with maps
  • 10.3.4 Interacting with APIs
  • 10.3.5 Sharing your package
  • 10.4 More resources
  • Terminology
  • Summary
  • Appendix A: Installing R
  • Windows
  • Mac
  • Linux
  • From source
  • Appendix B: Installing RStudio
  • Installing RStudio
  • Packages used in this book
  • Appendix C: Graphics in base R
  • Index
  • List of Figures
  • List of Tables
  • List of Listings.